Skip to main content
Log in

A new item-based deep network structure using a restricted Boltzmann machine for collaborative filtering

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The collaborative filtering (CF) technique has been widely used recently in recommendation systems. It needs historical data to give predictions. However, the data sparsity problem still exists. We propose a new item-based restricted Boltzmann machine (RBM) approach for CF and use the deep multilayer RBM network structure, which alleviates the data sparsity problem and has excellent ability to extract features. Each item is treated as a single RBM, and different items share the same weights and biases. The parameters are learned layer by layer in the deep network. The batch gradient descent algorithm with minibatch is used to increase the convergence speed. The new feature vector discovered by the multilayer RBM network structure is very effective in predicting a rating and achieves a better result. Experimental results on the data set of MovieLens show that the item-based multilayer RBM approach achieves the best performance, with a mean absolute error of 0.6424 and a root-mean-square error of 0.7843.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, R., Koren, Y., Volinsky, C., 2007. The BellKor Solution to the Netfix Prize. http://netflixprize.com/assets/GrandPrize2009_BPC_Bell Kor.pdf

    Google Scholar 

  • Bengio, Y., 2009. Learning deep architectures for AI. Found. Trends Mach. Learn., 2(1):1–127. http://dx.doi.org/10.1561/2200000006

    Article  MathSciNet  MATH  Google Scholar 

  • Breese, J., Hecherman, D., Kadie, C., 1998. Empirical analysis of predictive algorithms for collaborative filtering. Proc. 14th Conf. on Uncertainty in Artificial Intelligence, p.43–52.

    Google Scholar 

  • Candès, E.J., Recht, B., 2009. Exact matrix completion via convex optimization. Found. Comput. Math., 9(6):717–772. http://dx.doi.org/10.1007/s10208-009-9045-5

    Article  MathSciNet  MATH  Google Scholar 

  • Ference, G., Ye, M., Lee, W.C., 2013. Location recommendation for out-of-town users in location-based social networks. Proc. 22nd ACM Int. Conf. on Information & Knowledge Management, p.721–726. http://dx.doi.org/10.1145/2505515.2505637

    Google Scholar 

  • Feuerverger, A., He, Y., Khatri, S., 2012. Statistical significance of the Netflix challenge. Stat. Sci., 27(2):202–231. http://dx.doi.org/10.1214/11-STS368

    Article  MathSciNet  MATH  Google Scholar 

  • Hinton, G.E., 2002. Training products of experts by minimizing contrastive divergence. Neur. Comput., 14(8):1771–1800. http://dx.doi.org/10.1162/089976602760128018

    Article  MATH  Google Scholar 

  • Hinton, G.E., Sejnowski, J., 1983. Optimal perceptual inference. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.448–453.

    Google Scholar 

  • Hinton, G.E., Osindero, S., Teh, Y.W., 2006. A fast learning algorithm for deep belief nets. Neur. Comput., 18(7):1527–1554. http://dx.doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  • Koren, Y., Bell, R., Volinsky, C., 2009. Matrix factorization techniques for recommender systems. Computer, 42(8):30–37. http://dx.doi.org/10.1109/MC.2009.263

    Article  Google Scholar 

  • Li, Y., Yang, M., Zhang, Z.M., 2013. Scientific articles recommendation. Proc. 22nd ACM Int. Conf. on Information & Knowledge Management, p.1147–1156. http://dx.doi.org/10.1145/2505515.2505705

    Google Scholar 

  • Linden, G., Smith, B., York, J., 2003. Amazon.com recommendations: item-to-item collaborative filtering. IEEE Int. Comput., 7(1):76–80. http://dx.doi.org/10.1109/MIC.2003.1167344

    Article  Google Scholar 

  • Luo, H., 2011. Restricted Boltzmann Machines: a Collaborative Filtering Perspective. PhD Thesis, Shanghai Jiao Tong University, Shanghai, China (in Chinese).

    Google Scholar 

  • Mohamed, A., Dahl, G.E., Hinton, G.E., 2012. Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process., 20(1):14–22. http://dx.doi.org/10.1109/TASL.2011.2109382

    Article  Google Scholar 

  • Nathanson, T., Bitton, E., Goldberg, K., 2007. Eigentaste 5.0: constant-time adaptability in a recommender system using item clustering. Proc. ACM Conf. on Recommender Systems, p.149–152. http://dx.doi.org/10.1145/1297231.1297258

    Google Scholar 

  • Resnick, P., Iacovou, N., Suchak, M., et al., 1994. GroupLens: an open architecture for collaborative filtering of netnews. Proc. ACM Conf. on Computer Supported Cooperative Work, p.175–186. http://dx.doi.org/10.1145/192844.192905

    Google Scholar 

  • Salakhutdinov, R., Mnih, A., Hinton, G.E., 2007. Restricted Boltzmann machines for collaborative filtering. Proc. 24th Annual Int. Conf. on Machine Learning, p.791–798. http://dx.doi.org/10.1145/1273496.1273596

    Google Scholar 

  • Sarwar, B., Karypis, G., Konstan, J., et al., 2001. Item-based collaborative filtering recommendation algorithms. Proc. ACM 10th Int. Conf. on World Wide Web, p.285–295. http://dx.doi.org/10.1145/371920.372071

    Google Scholar 

  • Schafer, J.B., Konstan, J., Riedl, J., 1999. Recommender systems in E-commerce. Proc. 1st ACM Conf. on Electronic Commerce, p.158–166. http://dx.doi.org/10.1145/336992.337035

    Google Scholar 

  • Shi, J., Chen, J., Bao, Z., 2011. An application study on collaborative filtering in e-commerce. Int. Conf. on Service Systems and Service Management, p.1–7. http://dx.doi.org/10.1109/ICSSSM.2011.5959336

    Google Scholar 

  • Smolensky, P., 1986. Information processing in dynamical systems: foundations of harmony theory. In: Rumellhart, D.E., McClelland, J.L. (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 1: Foundations. MIT Press, Cambridge, MA,USA, p.194–281.

    Google Scholar 

  • Töscher, A., Jahrer, M., 2008. The BigChaos Solution to the Netfix Prize 2008. http://netflixprize.com/assets/GrandPrize2009_BPC_Big Chaos.pdf

    Google Scholar 

  • Wang, S., Tang, J., Wang, Y., 2015. Exploring implicit hierarchical structures for recommender systems. Proc. 24th Int. Joint Conf. on Artificial Intelligence, p.1813–1819.

    Google Scholar 

  • Wu, J.L., 2010. Collaborative Filtering on the Netflix Prize Dataset. PHD Thesis, Peking University, Beijing, China (in Chinese).

    Google Scholar 

  • Zhang, C.X., Ji, N.N., Wang, G.W., 2015. Restricted Boltzman machines. Chin. J. Eng. Math., 32(2):159–173 (in Chinese). http://dx.doi.org/10.3969/j.issn.1005-3085.2015.02.001

    MATH  Google Scholar 

  • Zhang, M., Tang, J., Zhang, X., et al., 2014. Addressing cold start in recommender systems: a semi-supervised cotraining algorithm. Proc. 37th Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.73–82. http://dx.doi.org/10.1145/2600428.2609599

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-qing Yao.

Additional information

Project supported by the National Science and Technology Support Plan (No. 2013BAH21B02-01) and the Beijing Natural Science Foundation (No. 4153058)

ORCID: Yong-ping DU, http://orcid.org/0000-0001-6867-2063

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Yp., Yao, Cq., Huo, Sh. et al. A new item-based deep network structure using a restricted Boltzmann machine for collaborative filtering. Frontiers Inf Technol Electronic Eng 18, 658–666 (2017). https://doi.org/10.1631/FITEE.1601732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601732

Key words

CLC number

Navigation