Skip to main content
Log in

High-resolution spectral video acquisition

  • Review
  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Compared with conventional cameras, spectral imagers provide many more features in the spectral domain. They have been used in various fields such as material identification, remote sensing, precision agriculture, and surveillance. Traditional imaging spectrometers use generally scanning systems. They cannot meet the demands of dynamic scenarios. This limits the practical applications for spectral imaging. Recently, with the rapid development in computational photography theory and semiconductor techniques, spectral video acquisition has become feasible. This paper aims to offer a review of the state-of-the-art spectral imaging technologies, especially those capable of capturing spectral videos. Finally, we evaluate the performances of the existing spectral acquisition systems and discuss the trends for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abed, F.M., Amirshahi, S.H., Abed, M.R.M., 2009. Reconstruction of reflectance data using an interpolation technique. J. Opt. Soc. Am. A, 26(3):613–624. https://doi.org/10.1364/JOSAA.26.000613

    Article  Google Scholar 

  • Adelson, E.H., Bergen, J.R., 1991. The plenoptic function and the elements of early vision. In: Landy, M.S., Movshon, J.A. (Eds.), Computational Models of Visual Processing. MIT Press, Cambridge, p.3–20.

  • Arce, G.R., Brady, D.J., Carin, L., et al., 2014. Compressive coded aperture spectral imaging: an introduction. IEEE Signal Process. Mag., 31(1):105–115. https://doi.org/10.1109/MSP.2013.2278763

    Article  Google Scholar 

  • Bao, J., Bawendi, M.G., 2015. A colloidal quantum dot spectrometer. Nature, 523(7558):67–70. https://doi.org/10.1038/nature14576

    Article  Google Scholar 

  • Bioucas-Dias, J.M., Figueiredo, M.A., 2007. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Imag. Process., 16(12):2992–3004. https://doi.org/10.1109/TIP.2007.909319

    Article  MathSciNet  Google Scholar 

  • Bodkin, A., Sheinis, A., Norton, A., et al., 2009. Snapshot hyperspectral imaging: the hyperpixel array camera. SPIE, 7334:73340H. https://doi.org/10.1117/12.818929

    Google Scholar 

  • Boyd, S., Parikh, N., Chu, E., et al., 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):1–122. https://doi.org/10.1561/2200000016

    Article  Google Scholar 

  • Candès, E.J., Wakin, M.B., 2008. An introduction to compressive sampling. IEEE Signal Process. Mag., 25(2): 21–30. https://doi.org/10.1109/MSP.2007.914731

    Article  Google Scholar 

  • Candès, E.J., Romberg, J., Tao, T., 2006. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489–509. https://doi.org/10.1109/TIT.2005.862083

    Article  MathSciNet  Google Scholar 

  • Cao, X., Du, H., Tong, X., et al., 2011a. A prism-mask system for multispectral video acquisition. IEEE Trans. Patt. Anal. Mach. Intell., 33(12):2423–2435. https://doi.org/10.1109/TPAMI.2011.80

    Article  Google Scholar 

  • Cao, X., Tong, X., Dai, Q., et al., 2011b. High resolution multispectral video capture with a hybrid camera system. IEEE Conf. on Computer Vision and Pattern Recognition, p.297–304. https://doi.org/10.1109/CVPR.2011.5995418

    Google Scholar 

  • Cao, X., Yue, T., Lin, X., et al., 2016. Computational snapshot multispectral cameras. IEEE Signal Process. Mag., 33(5):95–108. https://doi.org/10.1109/MSP.2016.2582378

    Article  Google Scholar 

  • Chakrabarti, A., Zickler, T., 2011. Statistics of real-world hyperspectral images. IEEE Conf. on Computer Vision and Pattern Recognition, p.193–200. https://doi.org/10.1109/CVPR.2011.5995660

    Google Scholar 

  • Descour, M., Dereniak, E., 1995. Computed-tomography imaging spectrometer: experimental calibration and reconstruction results. Appl. Opt., 34(22):4817–4826. https://doi.org/10.1364/AO.34.004817

    Article  Google Scholar 

  • Descour, M., Volin, C.E., Ford, B.K., et al., 2001. Snapshot hyperspectral imaging. In: Integrated Computational Imaging Systems. OSA Publishing, Washington, D.C., paper IWB4.

    Google Scholar 

  • Donoho, D.L., 2006. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306. https://doi.org/10.1109/TIT.2006.871582

    Article  MathSciNet  Google Scholar 

  • Du, H., Tong, X., Cao, X., et al., 2009. A prism-based system for multispectral video acquisition. IEEE 12th Int. Conf. on Computer Vision, p.175–182. https://doi.org/10.1109/ICCV.2009.5459162

    Google Scholar 

  • Gao, L., Kester, R.T., Hagen, N., et al., 2010. Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy. Opt. Expr., 18(14):14330–14344. https://doi.org/10.1364OE.18.014330

    Article  Google Scholar 

  • Gat, N., 2000. Imaging spectroscopy using tunable filters: a review. SPIE, 4056:50–64. https://doi.org/10.1117/12.381686

    Google Scholar 

  • Golbabaee, M., Vandergheynst, P., 2012. Compressed sensing of simultaneous low-rank and joint-sparse matrices. arXiv:1211.5058. http://arxiv.org/abs/1211.5058

    Google Scholar 

  • Green, R.O., Eastwood, M.L., Sarture, C.M., et al., 1998. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ., 65(3):227–248. https://doi.org/10.1016/S0034-4257(98)00064-9

    Article  Google Scholar 

  • Harvey, A.R., Beale, J.E., Greenaway, A.H., et al., 2000. Technology options for imaging spectrometry. Int. Symp. on Optical Science and Technology, p.13–24. https://doi.org/10.1117/12.406592

    Google Scholar 

  • Herrala, E., Okkonen, J.T., Hyvarinen, T.S., et al., 1994. Imaging spectrometer for process industry applications. SPIE, 2248:33–40. https://doi.org/10.1117/12.194344

    Google Scholar 

  • Hunicz, J., Piernikarski, D., 2001. Investigation of combustion in a gasoline engine using spectrophotometric methods. SPIE, 4516:307–314. https://doi.org/10.1117/12.435940

    Google Scholar 

  • Kindzelskii, A.L., Yang, Z.Y., Nabel, G.J., et al., 2000. Ebola virus secretory glycoprotein (sGP) diminishes FcγRIIIB-to-CR3 proximity on neutrophils. J. Immun., 164(2):953–958. https://doi.org/10.4049/jimmunol.164.2.953

    Article  Google Scholar 

  • Kittle, D., Choi, K., Wagadarikar, A., et al., 2010. Multiframe image estimation for coded aperture snapshot spectral imagers. Appl. Opt., 49(36):6824–6833.

    Article  Google Scholar 

  • Lawlor, J., Fletcher-Holmes, D., Harvey, A., et al., 2002. In vivo hyperspectral imaging of human retina and optic disc. Invest. Ophthalmol. Vis. Sci., 43(13):4350–4350. https://doi.org/10.1364/AO.49.006824

    Google Scholar 

  • Liao, X., Li, H., Carin, L., 2014. Generalized alternating projection for weighted-葧2,1 minimization with applications to model-based compressive sensing. SIAM J. Imag. Sci., 7(2):797–823. https://doi.org/10.1137/130936658

    Article  MathSciNet  Google Scholar 

  • Lin, X., Liu, Y., Wu, J., et al., 2014a. Spatial-spectral encoded compressive hyperspectral imaging. ACM Trans. Graph., 33(6), Article 233. https://doi.org/10.1145/2661229.2661262

    Article  Google Scholar 

  • Lin, X., Wetzstein, G., Liu, Y., et al., 2014b. Dualcoded compressive hyperspectral imaging. Opt. Lett., 39(7):2044–2047. https://doi.org/10.1364/OL.39.002044

    Article  Google Scholar 

  • Ma, C., Cao, X., Wu, R., et al., 2014. Content-adaptive high-resolution hyperspectral video acquisition with a hybrid camera system. Opt. Lett., 39(4):937–940. https://doi.org/10.1364/OL.39.000937

    Article  Google Scholar 

  • Mansfield, C.L., 2005. Seeing into the Past. http://www. nasa.gov/vision/earth/technologies/scrolls.html

    Google Scholar 

  • MitchellP.A.1995. Hyperspectral digital imagery collection experiment (HYDICE). SPIE, 2587:70–95. https://doi.org/10.1117/12.22680

    Google Scholar 

  • Mooney, J.M., Vickers, V.E., An, M., et al., 1997. Highthroughput hyperspectral infrared camera. J. Opt. Soc. Am. A, 14(11):2951–2961. https://doi.org/10.1364/JOSAA.14.002951

    Article  Google Scholar 

  • Morovic, P., Finlayson, G.D., 2006. Metamer-set-based approach to estimating surface reflectance from camera RGB. J. Opt. Soc. Am. A, 23(8):1814–1822. https://doi.org/10.1364/JOSAA.23.001814

    Article  Google Scholar 

  • Morris, H.R., Hoyt, C.C., Treado, P.J., 1994. Imaging spectrometers for fluorescence and Raman microscopy: acousto-optic and liquid crystal tunable filters. Appl. Spectr., 48(7):857–866.

    Article  Google Scholar 

  • Nguyen, R.M., Prasad, D.K., Brown, M.S., 2014. Trainingbased spectral reconstruction from a single RGB image. European Conf. on Computer Vision, p.186–201. https://doi.org/10.1007/978-3-319-10584-0_13

    Google Scholar 

  • Oh, W.S., Brown, M.S., Pollefeys, M., et al., 2016. Do it yourself hyperspectral imaging with everyday digital cameras. IEEE Conf. on Computer Vision and Pattern Recognition, p.2461–2469. https://doi.org/10.1109/CVPR.2016.270

    Google Scholar 

  • Radon, J., 1917. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Akad. Wiss., 69:262–277 (in German).

    MATH  Google Scholar 

  • Rørslett, B., 2004. All you ever wanted to know about digital UV and IR photography, but could not afford to ask. http://www.naturfotograf.com/UV_IR_rev00.html

    Google Scholar 

  • Schechner, Y.Y., Nayar, S.K., 2002. Generalized mosaicing: wide field of view multispectral imaging. IEEE Trans. Patt. Anal. Mach. Intell., 24(10):1334–1348. https://doi.org/10.1109/TPAMI.2002.1039205

    Article  Google Scholar 

  • Shepp, L.A., Vardi, Y., 1982. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imag., 1(2):113–122. https://doi.org/10.1109/TMI.1982.4307558

    Article  Google Scholar 

  • Su, L., Zhou, Z., Yuan, Y., et al., 2015. A snapshot light field imaging spectrometer. Opt.-Int. J. Light Electr. Opt., 126(9):877–881. https://doi.org/10.1016/j.ijleo.2015.01.034

    Article  Google Scholar 

  • Wagadarikar, A.A., Pitsianis, N.P., Sun, X., et al., 2009. Video rate spectral imaging using a coded aperture snapshot spectral imager. Opt. Expr., 17(8):6368–6388. https://doi.org/10.1364/OE.17.006368

    Article  Google Scholar 

  • Willett, R.M., Duarte, M.F., Davenport, M.A., et al., 2014. Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection. IEEE Signal Process. Mag., 31(1):116–126. https://doi.org/10.1109/MSP.2013.2279507

    Article  Google Scholar 

  • Wu, Y., Mirza, I.O., Arce, G.R., et al., 2011. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system. Opt. Lett., 36(14):2692–2694. https://doi.org/10.1364/OL.36.002692

    Article  Google Scholar 

  • Yamaguchi, M., Haneishi, H., Fukuda, H., et al., 2006. Highfidelity video and still-image communication based on spectral information: natural vision system and its applications. SPIE, 6062:60620G. https://doi.org/10.1117/12.649454

    Google Scholar 

  • Yasuma, F., Mitsunaga, T., Iso, D., et al., 2010. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Imag. Process., 19(9):2241–2253. https://doi.org/10.1109/TIP.2010.2046811

    Article  MathSciNet  Google Scholar 

  • Zhou, Z., Yuan, Y., Bin, X.L., 2010. Light field imaging spectrometer: conceptual design and simulated performance. Frontiers in Optics/Laser Science XXVI, paper FThM3. https://doi.org/10.1364/FIO.2010.FThM3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yue.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61627804, 61371166, 61422107, 61571215, and 61671236) and the Natural Science Foundation of Jiangsu Province, China (Nos. BK20140610 and BK20160634)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Ls., Yue, T., Cao, X. et al. High-resolution spectral video acquisition. Frontiers Inf Technol Electronic Eng 18, 1250–1260 (2017). https://doi.org/10.1631/FITEE.1700098

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1700098

Key words

CLC number

Navigation