Skip to main content

Advertisement

Log in

Optimal multi-degree reduction of C-Bézier surfaces with constraints

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We propose an optimal approach to solve the problem of multi-degree reduction of C-Bézier surfaces in the norm L2 with prescribed constraints. The control points of the degree-reduced C-Bézier surfaces can be explicitly obtained by using a matrix operation that is based on the transfer matrix of the C-Bézier basis. With prescribed boundary constraints, this method can be applied to piecewise continuous patches or to a single patch with the combination of surface subdivision. The resulting piecewise approximating patches are globally G1 continuous. Finally, numerical examples are presented to show the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ait-Haddou, R., Bartoň, M., 2016. Constrained multi-degree reduction with respect to Jacobi norms. Comput. Aided Geom. Des., 42:23–30. https://doi.org/10.1016/j.cagd.2015.12.003

    Article  MathSciNet  Google Scholar 

  • Chen, Q.Y., Wang, G.Z., 2003. A class of Bézier-like curves. Comput. Aided Geom. Des., 20(1):29–39. https://doi.org/10.1016/S0167-8396(03)00003-7

    Article  Google Scholar 

  • Fan, J.H., Wu, Y.J., Lin, X., 2002. Subdivision algorithm and G1 condition for C-Bézier curves. J. Comput. Aided Des. Comput. Graph., 14(5):421–424 https://doi.org/10.3321/j.issn:1003-9775.2002.05.009

    Google Scholar 

  • Gospodarczyk, P., 2015. Degree reduction of Bézier curves with restricted control points area. Comput. Aided Des., 62:143–151. https://doi.org/10.1016/j.cad.2014.11.009

    Article  MathSciNet  Google Scholar 

  • Huang, J.Z., Nguyen-Thanh, N., Zhou, K., 2017. Extended isogeometric analysis based on Bézier extraction for the buckling analysis of Mindlin-Reissner plates. Acta Mech., 228(9):3077–3093. https://doi.org/10.1007/s00707-017-1861-0

    Article  MathSciNet  Google Scholar 

  • Liu, L.G., Zhang, L., Lin, B.B., et al., 2009. Fast approach for computing roots of polynomials using cubic clipping. Comput. Aided Geom. Des., 26(5):547–559. https://doi.org/10.1016/j.cagd.2009.02.003

    Article  MathSciNet  Google Scholar 

  • Mainar, E., Peña, J.M., 2002. A basis of C-Bézier splines with optimal properties. Comput. Aided Geom. Des., 19(4):291–295. https://doi.org/10.1016/S0167-8396(02)00089-4

    Article  Google Scholar 

  • Nguyen-Thanh, N., Zhou, K., 2017. Extended isogeometric analysis based on PHT-splines for crack propagation near inclusions. Int. J. Numer. Methods Eng., 112(12):1777–1800. https://doi.org/10.1002/nme.5581

    Article  MathSciNet  Google Scholar 

  • Nguyen-Thanh, N., Zhou, K., Zhuang, X., et al., 2017. Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling. Comput. Methods Appl. Mech. Eng., 316:1157–1178. https://doi.org/10.1016/j.cma.2016.12.002

    Article  MathSciNet  Google Scholar 

  • Qin, X.Q., Wang, W.W., Hu, G., 2013. Degree reduction of C-Bézier curve based on genetic algorithm. Comput. Eng. Appl., 49(5):174–178. https://doi.org/10.3778/j.issn.1002-8331.1107-0346

    Google Scholar 

  • Rababah, A., Mann, S., 2013. Linear methods for G1, G2, and G3-multi-degree reduction of Bézier curves. Comput. Aided Des., 45(2):405–414. https://doi.org/10.1016/j.cad.2012.10.023

    Article  MathSciNet  Google Scholar 

  • Shen, W.Q., Wang, G.Z., 2015. Geometric shapes of C-Bézier curves. Comput. Aided Des., 58:242–247. https://doi.org/10.1016/j.cad.2014.08.007

    Article  MathSciNet  Google Scholar 

  • Shen, W.Q., Wang, G.Z., 2016. Degree elevation from Bézier curve to C-Bézier curve with corner cutting form. Appl. Math. A J. Chin. Univ., 31(2):165–176. https://doi.org/10.1007/s11766-016-3369-0

    Article  Google Scholar 

  • Tan, P.F., Nguyen-Thanh, N., Zhou, K., 2017. Extended isogeometric analysis based on Bézier extraction for an FGM plate by using the two-variable refined plate theory. Theor. Appl. Fract. Mech., 89:127–138. https://doi.org/10.1016/j.tafmec.2017.02.002

    Article  Google Scholar 

  • Yang, Q.M., Wang, G.Z., 2004. Inflection points and singularities on C-curves. Comput. Aided Geom. Des., 21(2):207–213. https://doi.org/10.1016/j.cagd.2003.11.002

    Article  MathSciNet  Google Scholar 

  • Zhang, J.W., 1996. C-Curves: an extension of cubic curves. Comput. Aided Geom. Des., 13(3):199–217. https://doi.org/10.1016/0167-8396(95)00022-4

    Article  MathSciNet  Google Scholar 

  • Zheng, J.M., Wang, G.Z., 2003. Perturbing Bézier coefficients for best constrained degree reduction in the L2-norm. Graph Models, 65(6):351–368. https://doi.org/10.1016/j.gmod.2003.07.001

    Article  Google Scholar 

  • Zhou, L., 2012. Algorithm for explicit multi-degree reduction of C-Bézier curves. J. Shanghai Marit. Univ., 33(4):86–90. https://doi.org/10.3969/j.issn.1672-9498.2012.04.017

    Google Scholar 

  • Zhou, L., Wang, G.J., 2009a. Optimal constrained multi-degree reduction of Bézier curves with explicit expressions based on divide and conquer. J. Zhejiang Univ.-Sci. A, 10(4):577–582. https://doi.org/10.1631/jzus.A0820290

    Article  Google Scholar 

  • Zhou, L., Wang, G.J., 2009b. Constrained multi-degree reduction of Bézier surfaces using Jacobi polynomials. Comput. Aided Geom. Des., 26(3):259–270. https://doi.org/10.1016/j.cagd.2008.10.003

    Article  Google Scholar 

  • Zhou, L., Wei, Y.W., Yao, Y.F., 2014. Optimal multi-degree reduction of Bézier curves with geometric constraints. Comput. Aided Des., 49:18–27. https://doi.org/10.1016/j.cad.2013.12.004

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian Zhou.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11401373, 61402281, and 11601322) and the Zhejiang Provincial Natural Science Foundation, China (No. LY16F020020)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Lin, Xh., Zhao, Hy. et al. Optimal multi-degree reduction of C-Bézier surfaces with constraints. Frontiers Inf Technol Electronic Eng 18, 2009–2016 (2017). https://doi.org/10.1631/FITEE.1700458

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1700458

Key words

CLC number