Skip to main content

Advertisement

Log in

A novel spiking neural network of receptive field encoding with groups of neurons decision

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Human information processing depends mainly on billions of neurons which constitute a complex neural network, and the information is transmitted in the form of neural spikes. In this paper, we propose a spiking neural network (SNN), named MD-SNN, with three key features: (1) using receptive field to encode spike trains from images; (2) randomly selecting partial spikes as inputs for each neuron to approach the absolute refractory period of the neuron; (3) using groups of neurons to make decisions. We test MD-SNN on the MNIST data set of handwritten digits, and results demonstrate that: (1) Different sizes of receptive fields influence classification results significantly. (2) Considering the neuronal refractory period in the SNN model, increasing the number of neurons in the learning layer could greatly reduce the training time, effectively reduce the probability of over-fitting, and improve the accuracy by 8.77%. (3) Compared with other SNN methods, MD-SNN achieves a better classification; compared with the convolution neural network, MD-SNN maintains flip and rotation invariance (the accuracy can remain at 90.44% on the test set), and it is more suitable for small sample learning (the accuracy can reach 80.15% for 1000 training samples, which is 7.8 times that of CNN).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Amri SS, Kalyankar NV, Khamitkar SD, 2010. Image segmentation by using edge detection. Int J Comput Sci Eng, 2(3):804–807.

    Google Scholar 

  • Berry MJII, Meister M, 1998. Refractoriness and neural precision. Proc Conf on Advances in Neural Information Processing Systems 10, p.110–116.

    Google Scholar 

  • Bi GQ, Poo MM, 2001. Synaptic modification by correlated activity: Hebb’s postulate revisited. Ann Rev Neurosci, 24(1):139–166. https://doi.org/10.1146/annurev.neuro.24.1.139

    Article  Google Scholar 

  • Brette R, Gerstner W, 2005. Adaptive exponential integrateand-fire model as an effective description of neuronal activity. J Neurophysiol, 94(5):3637–3642. https://doi.org/10.1152/jn.00686.2005

    Article  Google Scholar 

  • Burt P, Adelson E, 1983. The laplacian pyramid as a compact image code. IEEE Trans Commun, 31(4):532–540. https://doi.org/10.1109/TCOM.1983.1095851

    Article  Google Scholar 

  • Canny J, 1986. A computational approach to edge detection. IEEE Trans Patt Anal Mach Intell, 8(6):679–698. https://doi.org/10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  • Coates A, Ng A, Lee H, 2011. An analysis of single-layer networks in unsupervised feature learning. Proc 14th Int Conf on Artificial Intelligence and Statistics, p.215–223.

    Google Scholar 

  • Dasgupta S, Stevens CF, Navlakha S, 2017. A neural algorithm for a fundamental computing problem. Science, 358(6364):793–796. https://doi.org/10.1126/science.aam9868

    Article  MathSciNet  Google Scholar 

  • Dora S, Suresh S, Sundararajan N, 2015a. A sequential learning algorithm for a spiking neural classifier. Appl Soft Comput, 36:255–268. https://doi.org/10.1016/j.asoc.2015.06.062

    Article  Google Scholar 

  • Dora S, Sundaram S, Sundararajan N, 2015b. A two stage learning algorithm for a growing-pruning spiking neural network for pattern classification problems. Int Joint Conf on Neural Networks, p.1–7. https://doi.org/10.1109/ijcnn.2015.7280592

    Google Scholar 

  • Dora S, Subramanian K, Suresh S, et al., 2016. Development of a self-regulating evolving spiking neural network for classification problem. Neurocomputing, 171:1216–1229. https://doi.org/10.1016/j.neucom.2015.07.086

    Article  Google Scholar 

  • Dora S, Suresh S, Sundararajan N, 2017. Online meta-neuron based learning algorithm for a spiking neural classifier. Inform Sci, 414:19–32. https://doi.org/10.1016/j.ins.2017.05.050

    Article  Google Scholar 

  • Fukushima K, 1980. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern, 36(4):193–202. https://doi.org/10.1007/bf00344251

    Article  MathSciNet  MATH  Google Scholar 

  • Gerstner W, Kistler W, 2002. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511815706

    Book  MATH  Google Scholar 

  • Ghosh Dastidar S, Adeli H, 2007. Improved spiking neural networks for eeg classification and epilepsy and seizure detection. Integr Comput Aided Eng, 14(3):187–212.

    Google Scholar 

  • Gilbert CD, Wiesel TN, 1992. Receptive field dynamics in adult primary visual cortex. Nature, 356(6365):150–152. https://doi.org/10.1038/356150a0

    Article  Google Scholar 

  • Gütig R, Sompolinsky H, 2006. The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci, 9(3):420–428. https://doi.org/10.1038/nn1643

    Article  Google Scholar 

  • Hannun AY, Case C, Casper J, et al., 2014. Deep speech: Scaling up end-to-end speech recognition. https://arxiv.org/abs/1412.5567

    Google Scholar 

  • He KM, Zhang XY, Ren SQ, et al., 2016. Deep residual learning for image recognition. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.770–778. https://doi.org/10.1109/CVPR.2016.90

    Google Scholar 

  • Hodgkin AL, Huxley AF, 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 117(4):500–544. https://doi.org/10.1113/jphysiol.1952.sp004764

    Article  Google Scholar 

  • Hubel DH, Wiesel TN, 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol, 160(1):106–154. https://doi.org/10.1113/jphysiol.1962.sp006837

    Article  Google Scholar 

  • Hussain S, Liu SC, Basu A, 2014. Improved margin multiclass classification using dendritic neurons with morphological learning. IEEE Int Symp on Circuits and Systems, p.2640–2643. https://doi.org/10.1109/iscas.2014.6865715

    Google Scholar 

  • Izhikevich EM, 2001. Resonate-and-fire neurons. Neur Networks, 14(6-7):883–894. https://doi.org/10.1016/s0893-6080(01)00078-8

    Article  Google Scholar 

  • Izhikevich EM, 2003. Simple model of spiking neurons. IEEE Trans Neur Networks, 14(6):1569–1572. https://doi.org/10.1109/tnn.2003.820440

    Article  MathSciNet  Google Scholar 

  • Izhikevich EM, 2004. Which model to use for cortical spiking neurons? IEEE Trans Neur Networks, 15(5):1063–1070. https://doi.org/10.1109/tnn.2004.832719

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G, 2015. Deep learning. Nature, 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  • Legenstein R, Naeger C, Maass W, 2006. What can a neuron learn with spike-timing-dependent plasticity? Neur Comput, 17(11):2337–2382. https://doi.org/10.1162/0899766054796888

    Article  MathSciNet  MATH  Google Scholar 

  • Ma YQ, Wu H, Zhu MJ, et al., 2017. Reconstruction of visual image from functional magnetic resonance imaging using spiking neuron model. IEEE Trans Cogn Dev Syst, in press. https://doi.org/10.1109/tcds.2017.2764948

    Google Scholar 

  • Maass W, 1997. Networks of spiking neurons: the third generation of neural network models. Neur Networks, 10(9):1659–1671. https://doi.org/10.1016/s0893-6080(97)00011-7

    Article  Google Scholar 

  • Masquelier T, Guyonneau R, Thorpe SJ, 2009. Competitive stdp-based spike pattern learning. Neur Comput, 21(5):1259–1276. https://doi.org/10.1162/neco.2008.06-08-804

    Article  MATH  Google Scholar 

  • Merolla P, Arthur J, Akopyan F, et al., 2011. A digital neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm. IEEE Custom Integrated Circuits Conf, p.1–4. https://doi.org/10.1109/cicc.2011.6055294

    Google Scholar 

  • Ponulak F, Kasinski A, 2010. Supervised learning in spiking neural networks with resume: sequence learning, classification, and spike shifting. Neur Comput, 22(2):467–510. https://doi.org/10.1162/neco.2009.11-08-901

    Article  MathSciNet  MATH  Google Scholar 

  • Rodieck RW, 1965. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis Res, 5(11):583–601. https://doi.org/10.1016/0042-6989(65)90033-7

    Article  Google Scholar 

  • Schmidhuber J, 2015. Deep learning in neural networks: An overview. Neur networks, 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  • Sobel I, 2014. History and definition of the sobel operator. https://www.scribd.com/document/271811982/Historyand-Definition-of-Sobel-Operator

    Google Scholar 

  • Tang H, Yu Q, Tan KC, 2012. Learning real-world stimuli by single-spike coding and tempotron rule. Int Joint Conf on Neural Networks, p.1–6. https://doi.org/10.1109/ijcnn.2012.6252369

    Google Scholar 

  • Tavanaei A, Maida AS, 2015. A minimal spiking neural network to rapidly train and classify handwritten digits in binary and 10-digit tasks. Int J Adv Res Artif Intell, 4(7):1–8. https://doi.org/10.14569/ijarai.2015.040701

    Article  Google Scholar 

  • Thorpe S, Delorme A, van Rullen R, 2001. Spike-based strategies for rapid processing. Neur Netw, 14(67):715–725. https://doi.org/10.1016/s0893-6080(01)00083-1

    Article  Google Scholar 

  • Victor JD, Purpura KP, 1996. Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol, 76(2):1310–1326. https://doi.org/10.1152/jn.1996.76.2.1310

    Article  Google Scholar 

  • Wade JJ, Mcdaid LJ, Santos JA, et al., 2010. SWAT: a spiking neural network training algorithm for classification problems. IEEE Trans Neur Networks, 21(11):1817–1830. https://doi.org/10.1109/TNN.2010.2074212

    Article  Google Scholar 

  • Xie XR, Qu H, Yi Z, et al., 2017. Efficient training of supervised spiking neural network via accurate synapticefficiency adjustment method. IEEE Trans Neur Networks, 28(6):1411–1424. https://doi.org/10.1109/tnnls.2016.2541339

    Google Scholar 

  • Yeomans JS, 1979. The absolute refractory periods of selfstimulation neurons. Phys Behav, 22(5):911–919. https://doi.org/10.1016/0031-9384(79)90336-6

    Article  Google Scholar 

  • Yu Q, Tang HJ, Tan KC, et al., 2013. Rapid feedforward computation by temporal encoding and learning with spiking neurons. IEEE Trans Neur Networks, 24(10):1539–1552. https://doi.org/10.1109/TNNLS.2013.2245677

    Google Scholar 

  • Yu Q, Tang HJ, Tan KC, et al., 2014. A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing, 138:3–13. https://doi.org/10.1016/j.neucom.2013.06.052

    Article  Google Scholar 

  • Zenke F, Ganguli S, 2017. Superspike: supervised learning in multi-layer spiking neural networks. https://arxiv.org/abs/1705.11146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-qiang Ma.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61773312, 61773307, and L1522023), the China Postdoctoral Science Foundation (No. 2016M590949), and the National Basic Research Program (973) of China (No. 2015CB351703)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Yq., Wang, Zr., Yu, Sy. et al. A novel spiking neural network of receptive field encoding with groups of neurons decision. Frontiers Inf Technol Electronic Eng 19, 139–150 (2018). https://doi.org/10.1631/FITEE.1700714

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1700714

Keywords

CLC number