Abstract
This paper provides a comprehensive survey of the impact of the emerging communication technique, non-orthogonal multiple access (NOMA), on future wireless networks. Particularly, how the NOMA principle affects the design of the generation multiple access techniques is introduced first. Then the applications of NOMA to other advanced communication techniques, such as wireless caching, multiple-input multiple-output techniques, millimeter-wave communications, and cooperative relaying, are discussed. The impact of NOMA on communication systems beyond cellular networks is also illustrated, through the examples of digital TV, satellite communications, vehicular networks, and visible light communications. Finally, the study is concluded with a discussion of important research challenges and promising future directions in NOMA.
Similar content being viewed by others
References
Alkhateeb A, Nam YH, Zhang J, et al., 2016. Massive MIMO combining with switches. IEEE Wirel Commun Lett, 5(3):232–235. https://doi.org/10.1109/LWC.2016.2522963
Bastug E, Bennis M, Debbah M, 2014. Living on the edge: the role of proactive caching in 5G wireless networks. IEEE Commun Mag, 52(8):82–89. https://doi.org/10.1109/MCOM.2014.6871674
Boyd S, Vandenberghe L, 2004. Convex Optimization. Cambridge University Press, New York, USA.
Cai D, Fan P, Lei X, et al., 2016. Multi-dimensional SCMA codebook design based on constellation rotation and interleaving. IEEE 83rd Vehicular Technology Conf, p.1–5. https://doi.org/10.1109/VTCSpring.2016.7504356
Caus M, Vázquez MA, Pérez-Neira A, 2016. NOMA and interference limited satellite scenarios. 50th Asilomar Conf on Signals, Systems and Computers, p.497–501. https://doi.org/10.1109/ACSSC.2016.7869089
Chen S, Ren B, Gao Q, et al., 2017a. Pattern division multiple access (PDMA)—a novel non-orthogonal multiple access for 5G radio networks. IEEE Trans Veh Technol, 66(4):3185–3196. https://doi.org/10.1109/TVT.2016.2596438
Chen S, Hu J, Shi Y, et al., 2017b. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G. IEEE Commun Stand Mag, 1(2):70–76. https://doi.org/10.1109/MCOMSTD.2017.1700015
Chen Y, Wang L, Ai Y, et al., 2017. Performance analysis of NOMA-SM in vehicle-to-vehicle massive MIMO channels. IEEE J Sel Areas Commun, 35(12):2653–2666. https://doi.org/10.1109/JSAC.2017.2726006
Chen Z, Kountouris M, 2016. D2D caching vs. small cell caching: where to cache content in a wireless network? IEEE 17th Int Workshop on Signal Processing Advances in Wireless Communications, p.1–6. https://doi.org/10.1109/SPAWC.2016.7536874
Chen Z, Ding Z, Dai X, et al., 2016a. On the application of quasi-degradation to MISO-NOMA downlink. IEEE Trans Signal Process, 64(23):6174–6189. https://doi.org/10.1109/TSP.2016.2603971
Chen Z, Ding Z, Xu P, et al., 2016b. Optimal precoding for a QoS optimization problem in two-user MISO-NOMA downlink. IEEE Commun Lett, 20(6):1263–1266. https://doi.org/10.1109/LCOMM.2016.2555907
Choi J, 2016a. Power allocation for max-sum rate and max-min rate proportional fairness in NOMA. IEEE Commun Lett, 20(10):2055–2058. https://doi.org/10.1109/LCOMM.2016.2596760
Choi J, 2016b. On the power allocation for MIMO-NOMA systems with layered transmissions. IEEE Trans Wirel Commun, 15(5):3226–3237. https://doi.org/10.1109/TWC.2016.2518182
Cover TM, Thomas JA, 2006. Elements of Information Theory. John Wiley and Sons, New Jersey, USA. https://doi.org/10.1002/047174882X
Di B, Song L, Li Y, et al., 2017. Non-orthogonal multiple access for high-reliable and low-latency V2X communications in 5G systems. IEEE J Sel Areas Commun, 35(10):2383–2397. https://doi.org/10.1109/JSAC.2017.2726018
Diamantoulakis PD, Pappi KN, Ding Z, et al., 2016. Wireless-powered communications with non-orthogonal multiple access. IEEE Trans Wirel Commun, 15(12): 8422–8436. https://doi.org/10.1109/TWC.2016.2614937
Ding Z, Poor HV, 2016. Design of massive-MIMO-NOMA with limited feedback. IEEE Signal Process Lett, 23(5):629–633. https://doi.org/10.1109/LSP.2016.2543025
Ding Z, Yang Z, Fan P, et al., 2014. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process Lett, 21(12):1501–1505. https://doi.org/10.1109/LSP.2014.2343971
Ding Z, Peng M, Poor HV, 2015. Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun Lett, 19(8):1462–1465. https://doi.org/10.1109/LCOMM.2015.2441064
Ding Z, Adachi F, Poor HV, 2016a. The application of MIMO to non-orthogonal multiple access. IEEE Trans Wirel Commun, 15(1):537–552. https://doi.org/10.1109/TWC.2015.2475746
Ding Z, Schober R, Poor HV, 2016b. A general MIMO framework for NOMA downlink and uplink transmissions based on signal alignment. IEEE Trans Wirel Commun, 15(6):4438–4454. https://doi.org/10.1109/TWC.2016.2542066
Ding Z, Fan P, Poor HV, 2016c. Impact of user pairing on 5G non-orthogonal multiple access downlink transmissions. IEEE Trans Veh Technol, 65(8):6010–6023. https://doi.org/10.1109/TVT.2015.2480766
Ding Z, Dai L, Poor HV, 2016d. MIMO-NOMA design for small packet transmission in the Internet of Things. IEEE Access, 4:1393–1405. https://doi.org/10.1109/ACCESS.2016.2551040
Ding Z, Dai H, Poor HV, 2016e. Relay selection for cooperative NOMA. IEEE Wirel Commun Lett, 5(4):416–419. https://doi.org/10.1109/LWC.2016.2574709
Ding Z, Liu Y, Choi J, et al., 2017a. Application of nonorthogonal multiple access in LTE and 5G networks. IEEE Commun Mag, 55(2):185–191. https://doi.org/10.1109/MCOM.2017.1500657CM
Ding Z, Fan P, Karagiannidis G, et al., 2017b. NOMA assisted wireless caching: strategies and performance analysis. https://arxiv.org/abs/1709.06951
Ding Z, Dai L, Schober R, et al., 2017c. NOMA meets finite resolution analog beamforming in massive MIMO and millimeter-wave networks. IEEE Commun Lett, 21(8):1879–1882. https://doi.org/10.1109/LCOMM.2017.2700846
Ding Z, Fan P, Poor HV, 2017d. Random beamforming in millimeter-wave NOMA networks. IEEE Access, 5:7667–7681. https://doi.org/10.1109/ACCESS.2017.2673248
Ding Z, Zhao Z, Peng M, et al., 2017e. On the spectral efficiency and security enhancements of NOMA assisted multicast-unicast streaming. IEEE Trans Commun, 65(7):3151–3163. https://doi.org/10.1109/TCOMM.2017.2696527
Ding Z, Lei X, Karagiannidis GK, et al., 2017f. A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends. IEEE J Sel Areas Commun, 35(10):2181–2195. https://doi.org/10.1109/JSAC.2017.2725519
Ding Z, Fan P, Poor HV, 2018. On the coexistence between full-duplex and NOMA. IEEE Wirel Commun Lett, in press. https://doi.org/10.1109/LWC.2018.2811492
Elbamby MS, Bennis M, Saad W, et al., 2017. Resource optimization and power allocation in full duplex non-orthogonal multiple access (FD-NOMA) networks. IEEE J Sel Areas Commun, 35(12):2860–2873. https://doi.org/10.1109/JSAC.2017.2726218
Fay L, Michael L, Gómez-Barquero D, et al., 2016. An overview of the ATSC 3.0 physical layer specification. IEEE Trans Broadcast, 62(1):159–171. https://doi.org/10.1109/TBC.2015.2505417
Foschini GJ, Gans MJ, 1998. On limits of wireless communication in a fading environment when using multiple antennas. Wirel Pers Commun, 6(3):311–335. https://doi.org/10.1023/A:1008889222784
Gao X, Dai L, Sun Y, et al., 2017. Machine learning inspired energy-efficient hybrid precoding for mmWave massive MIMO systems. IEEE Int Conf on Communications, p.1–6. https://doi.org/10.1109/ICC.2017.7997065
Golrezaei N, Molisch AF, Dimakis AG, et al., 2013. Femtocaching and device-to-device collaboration: a new architecture for wireless video distribution. IEEE Commun Mag, 51(4):142–149. https://doi.org/10.1109/MCOM.2013.6495773
Hanif MF, Ding Z, Ratnarajah T, et al., 2016. A minorization-maximization method for optimizing sum rate in non-orthogonal multiple access systems. IEEE Trans Signal Process, 64(1):76–88. https://doi.org/10.1109/TSP.2015.2480042
Heath RW, González-Prelcic N, Rangan S, et al., 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Topics Signal Process, 10(3):436–453. https://doi.org/10.1109/JSTSP.2016.2523924
Ho IWH, Leung KK, Polak JW, 2011. Stochastic model and connectivity dynamics for VANETs in signalized road systems. IEEE/ACM Trans Network, 19(1):195–208. https://doi.org/10.1109/TNET.2010.2057257
Huawei Inc., 2015. 5G: a Techology Vision. http://www.huawei.com/en/about-huawei/publications/winwin-magazine/19/HW_329327
Kim JB, Lee IH, 2015. Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Commun Lett, 19(11):2037–2040. https://doi.org/10.1109/LCOMM.2015.2474856
Komine T, Nakagawa M, 2004. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans Consum Electron, 50(1):100–107. https://doi.org/10.1109/TCE.2004.1277847
Kulkarni MN, Ghosh A, Andrews JG, 2016. A comparison of MIMO techniques in downlink millimeter wave cellular networks with hybrid beamforming. IEEE Trans Commun, 64(5):1952–1967. https://doi.org/10.1109/TCOMM.2016.2542825
Lee J, Quek TQS, 2017. Hybrid full-/half-duplex system analysis in heterogeneous wireless network. IEEE Trans Wirel Commun, 14(5):2883–2895. https://doi.org/10.1109/TWC.2015.2396066
Liu L, Zhang R, Chua KC, 2013. Wireless information transfer with opportunistic energy harvesting. IEEE Trans Wirel Commun, 12(1):288–300. https://doi.org/10.1109/TWC.2012.113012.120500
Liu Y, Ding Z, Elkashlan M, et al., 2016. Cooperative nonorthogonal multiple access with simultaneous wireless information and power transfer. IEEE J Sel Areas Commun, 34(4):938–953. https://doi.org/10.1109/JSAC.2016.2549378
Luo S, Teh KC, 2017. Adaptive transmission for cooperative NOMA system with buffer-aided relaying. IEEE Commun Lett, 21(4):937–940. https://doi.org/10.1109/LCOMM.2016.2647250
Lv L, Ni Q, Ding Z, et al., 2017. Application of nonorthogonal multiple access in cooperative spectrumsharing networks over Nakagami-m fading channels. IEEE Trans Veh Technol, 66(6):5506–5511. https://doi.org/10.1109/TVT.2016.2627559
Maddah-Ali MA, Niesen U, 2014. Fundamental limits of caching. IEEE Trans Inform Theory, 60(5):2856–2867. https://doi.org/10.1109/TIT.2014.2306938
Marshoud H, Kapinas VM, Karagiannidis GK, et al., 2016. Non-orthogonal multiple access for visible light communications. IEEE Photon Technol Lett, 28(1):51–54. https://doi.org/10.1109/LPT.2015.2479600
Mitra R, Bhatia V, 2017. Precoded Chebyshev-NLMSbased pre-distorter for nonlinear LED compensation in NOMA-VLC. IEEE Trans Commun, 65(11):4845–4856. https://doi.org/10.1109/TCOMM.2017.2736548
Molina-Masegosa R, Gozalvez J, 2017. LTE-V for sidelink 5G V2X vehicular communications: a new 5G technology for short-range vehicle-to-everything communications. IEEE Veh Technol Mag, 12(4):30–39. https://doi.org/10.1109/MVT.2017.2752798
Nikopour H, Baligh H, 2013. Sparse code multiple access. IEEE 24th Int Symp on Personal Indoor and Mobile Radio Communications, p.332–336. https://doi.org/10.1109/PIMRC.2013.6666156
Nonaka N, Benjebbour A, Higuchi K, 2014. System-level throughput of NOMA using intra-beam superposition coding and SIC in MIMO downlink when channel estimation error exists. IEEE Int Conf on Communication Systems, p.202–206. https://doi.org/10.1109/ICCS.2014.7024794
NTT Docomo Inc., 2014. 5G Radio Access: Requirements, Concepts and Technologies.
NTT Docomo Inc., 2017. World’s First Successful 5G Trial Using Smartphone-Sized NOMA Chipset-Embedded Device to Increase Spectral Efficiency. https://www.nttdocomo.co.jp/english/info/media_center/pr/2017/1102_02.html
Pan G, Ye J, Ding Z, 2017a. Secure hybrid VLC-RF systems with light energy harvesting. IEEE Trans Commun, 65(10):4348–4359. https://doi.org/10.1109/TCOMM.2017.2709314
Pan G, Ye J, Ding Z, 2017b. On secure VLC systems with spatially random terminals. IEEE Commun Lett, 21(3):492–495. https://doi.org/10.1109/LCOMM.2016.2643632
Proakis J, 2000. Digital Communications. McGraw-Hill, New York, USA.
Saito Y, Benjebbour A, Kishiyama Y, et al., 2013. System-level performance evaluation of downlink nonorthogonal multiple access (NOMA). IEEE 24th IntSymp on Personal Indoor and Mobile Radio Communications, p.611–615. https://doi.org/10.1109/PIMRC.2013.6666209
Sun Y, Ng DWK, Ding Z, et al., 2017. Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems. IEEE Trans Commun, 65(3):1077–1091. https://doi.org/10.1109/TCOMM.2017.2650992
Taherzadeh M, Nikopour H, Bayesteh A, et al., 2014. SCMA codebook design. IEEE 80th Vehicular Technology Conf, p.1–5. https://doi.org/10.1109/VTCFall.2014.6966170
techUK, 2015. 5G Innovation Opportunities—a Discussion Paper.
Verdú S, 1998. Multiuser Detection. Cambridge University Press, Cambridge, UK.
Wei Z, Yuan J, Ng D, et al., 2016. A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. ZTE Commun, 14(4):17–25.
Wei Z, Dai L, Ng DWK, et al., 2017. Performance analysis of a hybrid downlink-uplink cooperative NOMA scheme. IEEE 85th Vehicular Technology Conf, p.1–7. https://doi.org/10.1109/VTCSpring.2017.8108407
Xu D, Ren P, Du Q, et al., 2017. Combat eavesdropping by full-duplex technology and signal transformation in non-orthogonal multiple access transmission. IEEE Int Conf on Communications, p.1–6. https://doi.org/10.1109/ICC.2017.7997115
Xu P, Ding Z, Dai X, et al., 2015. A new evaluation criterion for non-orthogonal multiple access in 5G software defined networks. IEEE Access, 3:1633–1639. https://doi.org/10.1109/ACCESS.2015.2480117
Xu P, Yuan Y, Ding Z, et al., 2016. On the outage performance of non-orthogonal multiple access with 1-bit feedback. IEEE Trans Wirel Commun, 15(10):6716–6730. https://doi.org/10.1109/TWC.2016.2587880
Xu X, Tao M, 2017. Modeling, analysis, and optimization of coded caching in small-cell networks. IEEE Trans Commun, 65(8):3415–3428. https://doi.org/10.1109/TCOMM.2017.2706726
Yakou K, Higuchi K, 2015. Downlink NOMA with SIC using unified user grouping for non-orthogonal user multiplexing and decoding order. Int Symp on Intelligent Signal Processing and Communication Systems, p.508–513. https://doi.org/10.1109/ISPACS.2015.7432825
Yang Z, Ding Z, Fan P, et al., 2016a. A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans Wirel Commun, 15(11):7244–7257. https://doi.org/10.1109/TWC.2016.2599521
Yang Z, Cui J, Lei X, et al., 2016b. Impact of factor graph on average sum rate for uplink sparse code multiple access systems. IEEE Access, 4:6585–6590. https://doi.org/10.1109/ACCESS.2016.2614330
Yang Z, Ding Z, Fan P, et al., 2016c. On the performance of non-orthogonal multiple access systems with partial channel information. IEEE Trans Commun, 64(2):654–667. https://doi.org/10.1109/TCOMM.2015.2511078
Yang Z, Ding Z, Wu Y, et al., 2017. Novel relay selection strategies for cooperative NOMA. IEEE Trans Veh Technol, 66(11):10114–10123. https://doi.org/10.1109/TVT.2017.2752264
Yin L, Popoola WO, Wu X, et al., 2016. Performance evaluation of non-orthogonal multiple access in visible light communication. IEEE Trans Commun, 64(12):5162–5175. https://doi.org/10.1109/TCOMM.2016.2612195
Yu L, Fan P, Ma Z, et al., 2016. An optimized design of irregular SCMA codebook based on rotated angles and EXIT chart. IEEE 84th Vehicular Technology Conf, p.1–5. https://doi.org/10.1109/VTCFall.2016.7880904
Yu L, Fan P, Lei X, et al., 2017. BER analysis of SCMA systems with codebooks based on star-QAM signaling constellations. IEEE Commun Lett, 21(9):1925–1928. https://doi.org/10.1109/LCOMM.2017.2704090
Zeng M, Yadav A, Dobre OA, et al., 2017. Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster. IEEE J Sel Areas Commun, 35(10):2413–2424. https://doi.org/10.1109/JSAC.2017.2725879
Zhang D, Liu Y, Ding Z, et al., 2017. Performance analysis of non-regenerative massive-MIMO-NOMA relay systems for 5G. IEEE Trans Commun, 65(11):4777–4790. https://doi.org/10.1109/TCOMM.2017.2739728
Zhang L, Li W, Wu Y, et al., 2016. Layered-divisionmultiplexing: theory and practice. IEEE Trans Broadcast, 62(1):216–232. https://doi.org/10.1109/TBC.2015.2505408
Zhang L, Liu J, Xiao M, et al., 2017. Performance analysis and optimization in downlink NOMA systems with cooperative full-duplex relaying. IEEE J Sel Areas Commun, 35(10):2398–2412. https://doi.org/10.1109/JSAC.2017.2724678
Zhang X, Gao Q, Gong C, et al., 2017. User grouping and power allocation for NOMA visible light communication multi-cell networks. IEEE Commun Lett, 21(4):777–780. https://doi.org/10.1109/LCOMM.2016.2642921
Zhang Y, Wang HM, Yang Q, et al., 2016. Secrecy sum rate maximization in non-orthogonal multiple access. IEEE Commun Lett, 20(5):930–933. https://doi.org/10.1109/LCOMM.2016.2539162
Zhang Y, Wang HM, Zheng TX, et al., 2017. Energy-efficient transmission design in non-orthogonal multiple access. IEEE Trans Veh Technol, 66(3):2852–2857. https://doi.org/10.1109/TVT.2016.2578949
Zhang Z, Ma Z, Xiao M, et al., 2017a. Full-duplex deviceto-device aided cooperative non-orthogonal multiple access. IEEE Trans Veh Technol, 66(5):4467–4471. https://doi.org/10.1109/TVT.2016.2600102
Zhang Z, Ma Z, Xiao Y, et al., 2017b. Non-orthogonal multiple access for cooperative multicast millimeter wave wireless networks. IEEE J Sel Areas Commun, 35(8):1794–1808. https://doi.org/10.1109/JSAC.2017.2710918
Zhong C, Zhang Z, 2016. Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun Lett, 20(12):2478–2481. https://doi.org/10.1109/LCOMM.2016.2611500
Zhou GT, Viberg M, McKelvey T, 2003. A first-order statistical method for channel estimation. IEEE Signal Process Lett, 10(3):57–60. https://doi.org/10.1109/LSP.2002.807864
Zhu X, Jiang C, Kuang L, et al., 2017. Non-orthogonal multiple access based integrated terrestrial-satellite networks. IEEE J Sel Areas Commun, 35(10):2253–2267. https://doi.org/10.1109/JSAC.2017.2724478
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the UK EPSRC (No. EP/N005597/1), the H2020-MSCA-RISE-2015 (No. 690750), the National Natural Science Foundation of China (No. 61728101), and the U.S. National Science Foundation (Nos. CNS-1702808 and ECCS-1647198)
Rights and permissions
About this article
Cite this article
Ding, Zg., Xu, M., Chen, Y. et al. Embracing non-orthogonalmultiple access in future wireless networks. Frontiers Inf Technol Electronic Eng 19, 322–339 (2018). https://doi.org/10.1631/FITEE.1800051
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1800051
Key words
- Non-orthogonal multiple access (NOMA)
- Wireless caching
- Multiple-input multiple-output (MIMO) NOMA
- Cooperative NOMA
- Millimeter-wave networks
- Visible light communications (VLC)