Abstract
Extreme-scale numerical simulations seriously demand extreme parallel computing capabilities. To address the challenges of these capabilities toward exascale, we systematically analyze the major bottlenecks of parallel computing research from three perspectives: computational scale, computing efficiency, and programming productivity. For these bottlenecks, we propose a series of urgent key issues and coping strategies. This study will be useful in synchronizing development between the numerical computing capability and supercomputer peak performance.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Amarasinghe S, Hall M, Lethin R, et al., 2011. Exascale programming challenges. Technical Report of the Workshop on Exascale Programming Challenges.
Ashby S, Beckman P, Chen J, et al., 2011. The opportunities and challenges of exascale computing. Summary Report of the Advanced Scientific Computing Advisory Committee Subcommittee.
Balay S, Gropp WD, McInnes LC, et al., 1997. Efficient management of parallelism in object–oriented numerical software libraries. In: Arge E, Bruaset AM, Langtangen HP (Eds.), Modern Software Tools for Scientific Computing. Birkhauser Boston Inc., Cambridge, USA. https://doi.org/10.1007/978–1–4612–1986–6.8
Campos C, Roman JE, 2012. Strategies for spectrum slicing based on restarted Lanczos methods. Numer Algor, 60(2):279–295. https://doi.org/10.1007/s11075–012–9564–z
Cao X, Mo Z, Liu X, et al., 2011. Parallel implementation of fast multipole method based on JASMIN. Sci China Inform Sci, 54(4):757–766 (in Chinese). https://doi.org/10.1007/s11432–011–4181.3
Chung IH, Lee CR, Zhou J, et al., 2011. Hierarchical mapping for HPC applications. IEEE Int Symp on Parallel and Distributed Processing Workshops and PhD Forum, p.1815–1823. https://doi.org/10.1109/IPDPS.2011.340
Cooley JW, Tukey JW, 1965. An algorithm for the machine calculation of complex Fourier series. Math Comput, 19(90):297–301. https://doi.org/10.1090/S0025–5718–1965–0178586.1
Darve E, 2000. The fast multipole method: numerical implementation. J Comput Phys, 160(1):195–240. https://doi.org/10.1006/jcph.2000.6451
Dolean V, Jolivet P, Nataf F, 2015. An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation. Society for Industrial and Applied Mathematics, Philadelphia, USA. https://doi.org/10.1137/1.9781611974065
Dongarra J, Foster I, Fox G, et al., 2003. The Sourcebook of Parallel Computing. Morgan Kaufmann Publishers Inc., San Francisco, USA.
Dubey A, Almgren A, Bell J, et al., 2014. A survey of high level frameworks in block–structured adaptive mesh refinement packages. J Parall Distr Comput, 74(12):3217–3227. https://doi.org/10.1016/j.jpdc.2014.07.001
Engheta N, Murphy WD, Rokhlin V, et al., 1992. The fast multipole method (FMM) for electromagnetic scattering problems. IEEE Trans Antenn Propag, 40(6):634–641. https://doi.org/10.1109/8.144597
Falgout RD, Yang UM, 2002. Hypre: a library of high performance pre–conditioners. Int Conf on Computational Science, p.632–641.
Fu H, He C, Chen B, et al., 2017. 18.9–Pflops nonlinear earthquake simulation on Sunway TaihuLight: enabling depiction of 18–Hz and 8–meter scenarios. Int Conf for High Performance Computing, Networking, Storage, and Analysis, p.1–12. https://doi.org/10.1145/3126908.3126910
Hennessy JL, Patterson DA, 2003. Computer Architecture: a Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, USA.
Hernandez V, Roman JE, Vidal V, 2005. SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans Math Softw, 31(3):351–362. https://doi.org/10.1145/1089014.1089019
Heroux MA, Bartlett RA, Howle VE, et al., 2005. An overview of the Trilinos project. ACM Trans Math Softw, 31(3):397–423. https://doi.org/10.1145/1089014.1089021
Johansen H, McInnes LC, Bernholdt DE, et al., 2014. Software productivity for extreme–scale science. DOE Workshop Report.
Keyes DE, Mcinnes LC, Woodward CS, et al., 2013. Multiphysics simulations: challenges and opportunities. Int J High Perform Comput Appl, 27(1):4–83. https://doi.org/10.1177.1094342012468181
Knoll DA, Keyes DE, 2004. Jacobian–free Newton–Krylov methods: a survey of approaches and applications. J Comput Phys, 193(2):357–397. https://doi.org/10.1016/j.jcp.2003.08.010
Li J, Zhang X, Tan G, et al., 2013. SMAT: an input adaptive sparse matrix–vector multiplication auto–tuner. ACM SIGPLAN Not, 48(6):117–126. https://doi.org/10.1145/2499370.2462181
Liu X, Yang Z, Yang Y, 2018. A nested partitioning load balancing algorithm for Tianhe–2. J Comput Res Devel, 55(2):418–425. https://doi.org/10.7544/issn1000–1239.2018.20160877
Lucas R, Ang J, Bergman K, et al., 2014. DOE Advanced Scientific Computing Advisory Subcommittee report: top 10 exascale research challenges. https://doi.org/10.2172.1222713
Mo Z, 2014. Domain–specific programming model for high performance scientific and engineering computation. Commun CCF, 10(1):8–12 (in Chinese).
Mo Z, 2015. Progress on high performance programming framework for numerical simulation. E–Sci Technol Appl, 6(4):11–19 (in Chinese). https://doi.org/10.11871/j.issn.1674–9480.2015.04.002
Mo Z, 2016. High performance programming frameworks for numerical simulation. Nat Sci Rev, 3(1):28–29. https://doi.org/10.1093/nsr/nw.086
Mo Z, Zhang A, Cao X, et al., 2010. JASMIN: a parallel software infrastructure for scientific computing. Front Comput Sci China, 4(4):480–488. https://doi.org/10.1007/s11704–010–0120.5
Mo Z, Zhang A, Liu Q, et al., 2015. Research on the components and practices for domain–specific parallel programming models for numerical simulation. Sci Sin Inform, 45(3):385–397 (in Chinese). https://doi.org/10.1360/N112013.00197
Mo Z, Zhang A, Liu Q, et al., 2016. Parallel algorithm and parallel programming: from specialty to generality as well as software reuse. Sci Sin Inform, 46(10):1392–1410 (in Chinese). https://doi.org/10.1360/N112016.00144
Pei W, Zhu S, 2009. Scientific computing for laser fusion. Physics, 38(8):559–568 (in Chinese). https://doi.org/10.3321/j.issn:0379–4148.2009.08.005
Reed DA, Bajcsy R, Fernandez MA, et al., 2005. Computational science: ensuring America’s competitiveness. Research Report No. ADA462840. President’s Information Technology Advisory Committee. http://www.dtic.mil/dtic/tr/fulltext/u2/a462840.pdf
Rossinelli D, Hejazialhosseini B, Hadjidoukas P, et al., 2013 11 Pflop/s simulations of cloud cavitation collapse. Int Conf on High Performance Computing, Networking, Storage, and Analysis, p.1–13. https://doi.org/10.1145/2503210.2504565
Rudi J, Malossi ACI, Isaac T, et al., 2015. An extreme–scale implicit solver for complex PDEs: highly heterogeneous flow in Earth’s mantle. Int Conf for High Performance Computing, Networking, Storage, and Analysis, p.1–12. https://doi.org/10.1145/2807591.2807675
Saad T, Darwish M, 2009. A high scalability parallel algebraic multigrid solver. In: Deconinck H, Dick E (Eds.), Computational Fluid Dynamics. Springer Berlin Heidelberg, p.231–236. https://doi.org/10.1007/978–3–540–92779–2.34
Saad Y, 2003. Iterative Methods for Sparse Linear Systems (2nd Ed.). Society for Industrial and Applied Mathematics, Philadelphia, USA.
Sarkar V, Budimlic Z, Kulkani M, 2016. 2014 runtime systems Summit. Runtime Systems Report. https://doi.org/10.2172.1341724
Shaw DE, Grossman JP, Bank JA, et al., 2014. Anton 2: raising the bar for performance and programmability in a special–purpose molecular dynamics supercomputer. Int Conf for High Performance Computing, Networking, Storage, and Analysis, p.41–53. https://doi.org/10.1109/SC.2014.9
Tian R, Zhou M, Wang J, et al., 2018. A challenging dam structural analysis: large–scale implicit thermomechanical coupled contact simulation on Tianhe–2. Comput Mech, p.1–21. https://doi.org/10.1007/s00466–018–1586.5
Vuduc R, Demmel JW, Yelick KA, 2005. OSKI: a library of automatically tuned sparse matrix kernels. J Phys Conf Ser, 16:521–530. https://doi.org/10.1088/1742–6596/16/1.071
Wissink AM, Hornung RD, Kohn SR, et al., 2001. Large scale parallel structured AMR calculations using the SAMRAI framework. ACM/IEEE Conf on Supercomputing, p.6. https://doi.org/10.1145/582034.582040
Xu X, Mo Z, 2017. Algebraic interface–based coarsening AMG pre–conditioner for multi–scale sparse matrices with applications to radiation hydrodynamics computation. Numer Linear Algebra Appl, 24(2):e2078. https://doi.org/10.1002/nla.2078
Yang C, Xue W, Fu H, et al., 2016. 10M–core scalable fullyimplicit solver for non–hydrostatic atmospheric dynamics. Int Conf for High Performance Computing, Networking, Storage, and Analysis, p.1–12. https://doi.org/10.1109/SC.2016.5
Yang X, 2012. Sixty years of parallel computing. Comput Eng Sci, 34(8):1–10 (in Chinese). https://doi.org/10.3969/j.issn.1007–130X.2012.08.001
Zhao Z, Zhou H, Ma H, et al., 2014. Numerical simulation and verification of electromagnetic pulse effect of PIN diode limiter. High Power Laser Particle Beams, 26(6):81–85 (in Chinese). https://doi.org/10.11884/HPLPB201426.063018
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (No. 91430218) and the National Key Technology R&D Program of China (Nos. 2016YFB0201300 and 2017YFB0202103)
Rights and permissions
About this article
Cite this article
Mo, Zy. Extreme-scale parallel computing: bottlenecks and strategies. Frontiers Inf Technol Electronic Eng 19, 1251–1260 (2018). https://doi.org/10.1631/FITEE.1800421
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1800421