Abstract
Traditional exoskeletons have made considerable contributions to people in terms of providing wearable assistance and rehabilitation. However, exoskeletons still have some disadvantages, such as being heavy, bulky, stiff, noisy, and having a fixed center of rotation that can be a burden on elders and patients with weakened muscles. Conversely, artificial muscles based on soft, smart materials possess the attributes of being lightweight, compact, highly flexible, and have mute actuation, for which they are considered to be the most similar to natural muscles. Among these materials, dielectric elastomer (DE) and polyvinyl chloride (PVC) gel exhibit considerable actuation strain, high actuation stress, high response speed, and long life span, which give them great potential for application in wearable assistance and rehabilitation. Unfortunately, there is very little research on the application of these two materials in these fields. In this review, we first introduce the working principles of the DE and PVC gel separately. Next, we summarize the DE materials and the preparation of PVC gel. Then, we review the electrodes and self-sensing systems of the two materials. Lastly, we present the initial applications of these two materials for wearable assistance and rehabilitation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ali M, Ueki T, Tsurumi D, et al., 2011. Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator. Langmuir, 27(12):7902–7908. https://doi.org/10.1021/la2009489
Ali M, Ueki T, Hirai T, et al., 2013. Dielectric and electromechanical studies of plasticized poly (vinyl chloride) fabricated from plastisol. Polym Int, 62(3):501–506. https://doi.org/10.1002/pi.4343
Anderson IA, Gisby TA, McKay TG, et al., 2012. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J Appl Phys, 112(4):041101. https://doi.org/10.1063/1.4740023
Asaka K, Hashimoto M, 2018. Electrical properties and electromechanical modeling of plasticized PVC gel actuators. Sens Actuat B, 273:1246–1256. https://doi.org/10.1016/j.snb.2018.07.037
Asbeck AT, de Rossi SMM, Holt KG, et al., 2015. A biologically inspired soft exosuit for walking assistance. Int J Rob Res, 34(6):744–762. https://doi.org/10.1177/0278364914562476
Awad LN, Bae J, O’Donnell K, et al., 2017. A soft robotic exosuit improves walking in patients after stroke. Sci Trans Med, 9(400):eaai9084. https://doi.org/10.1126/scitranslmed.aai9084
Bae JW, Yeo M, Shin EJ, et al., 2015. Eco-friendly plasticized poly (vinyl chloride)–acetyl tributyl citrate gels for varifocal lens. RSC Adv, 5(115):94919–94925. https://doi.org/10.1039/c5ra15304b
Bar-Cohen Y, Cardoso VF, Ribeiro C, et al., 2017. Electroactive polymers as actuators. In: Uchino K (Ed.), Advanced Piezoelectric Materials: Science and Technology. Elsevier, Amsterdam, p.319–352. https://doi.org/10.1016/B978-0-08-102135-4.00008-4
Brochu P, Pei QB, 2010. Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun, 31(1):10–36. https://doi.org/10.1002/marc.200900425
Candow DG, Chilibeck PD, 2005. Differences in size, strength, and power of upper and lower body muscle groups in young and older men. J Gerontol Ser A, 60(2):148–156. https://doi.org/10.1093/gerona/60.2.148
Carpi F, Mannini A, de Rossi D, 2008. Elastomeric contractile actuators for hand rehabilitation splints. SPIE, 6927: 692705. https://doi.org/10.1117/12.774644
Carpi F, Bauer S, de Rossi D, 2010. Stretching dielectric elastomer performance. Science, 330(6012):1759–1761. https://doi.org/10.1126/science.1194773
Carpi F, Frediani G, Gerboni C, et al., 2014. Enabling variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers. Med Eng Phys, 36(2):205–211. https://doi.org/10.1016/j.medengphy.2013.10.015
Chen BH, Bai YY, Xiang F, et al., 2014. Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators. J Polym Sci Part B, 52(16):1055–1060. https://doi.org/10.1002/polb.23529
Chen D, Liang JJ, Pei QB, 2016. Flexible and stretchable electrodes for next generation polymer electronics: a review. Sci China Chem, 59(6):659–671. https://doi.org/10.1007/s11426-015-5520-9
Cheng X, Yang WM, Cheng LS, et al., 2018a. Tunable-focus negative poly (vinyl chloride) gel Microlens driven by unilateral electrodes. J Appl Polym Sci, 135(15):46136. https://doi.org/10.1002/app.46136
Cheng X, Yang WM, Zhang YC, et al., 2018b. Understanding the electro-stimulated deformation of PVC gel by in situ Raman spectroscopy. Polym Test, 65:90–96. https://doi.org/10.1016/j.polymertesting.2017.11.013
Choi DS, Jeong J, Shin EJ, et al., 2017. Focus-tunable double convex lens based on non-ionic electroactive gel. Opt Expr, 25(17):20133–20141. https://doi.org/10.1364/OE.25.020133
Dzahir MAM, Yamamoto SI, 2014. Recent trends in lower-limb robotic rehabilitation orthosis: control scheme and strategy for pneumatic muscle actuated gait trainers. Robotics, 3(2):120–148. https://doi.org/10.3390/robotics3020120
Furuse A, Hashimoto M, 2017. Development of novel textile and yarn actuators using plasticized PVC gel. SPIE, 10163:1016327. https://doi.org/10.1117/12.2258595
Gisby TA, O’Brien BM, Anderson IA, 2013. Self sensing feedback for dielectric elastomer actuators. Appl Phys Lett, 102(19):193703. https://doi.org/10.1063/1.4805352
Goulbourne N, Mockensturm E, Frecker M, 2005. A nonlinear model for dielectric elastomer membranes. J Appl Mech, 72(6):899–906. https://doi.org/10.1115/1.2047597
Gu GY, Gupta U, Zhu J, et al., 2017a. Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator. IEEE Trans Rob, 33(5):1263–1271. https://doi.org/10.1109/TRO.2017.2706285
Gu GY, Zhu J, Zhu LM, et al., 2017b. A survey on dielectric elastomer actuators for soft robots. Bioinspir Biomim, 12(1):011003. https://doi.org/10.1088/1748-3190/12/1/011003
Hashimoto M, 2011. Development of an artificial muscle using PVC gel. Proc ASME Int Mechanical Engineering Congress and Exposition, p.745–754. https://doi.org/10.1115/IMECE2011-63354
He Y, Eguren D, Luu TP, et al., 2017. Risk management and regulations for lower limb medical exoskeletons: a review. Med Dev (Auckl), 10:89–107. https://doi.org/10.2147/MDER.S107134
Helps T, Taghavi M, Rossiter J, 2018. Towards electroactive gel artificial muscle structures. SPIE, 10594:1059408. https://doi.org/10.1117/12.2323527
Hines L, Petersen K, Lum GZ, et al., 2017. Soft actuators for small-scale robotics. Adv Mater, 29(13):1603483. https://doi.org/10.1002/adma.201603483
Hirai T, Ogiwara T, Fujii K, et al., 2009. Electrically Active artificial pupil showing amoeba-Like pseudopodial deformation. Adv Mater, 21(28):2886–2888. https://doi.org/10.1002/adma.200802217
Hirai T, Xia H, Hirai K, 2010. The effects of adding ionic liquids to plasticized PVC gel actuators. Proc IEEE Int Conf on Mechatronics and Automation, p.71–76. https://doi.org/10.1109/ICMA.2010.5587920
Hong W, 2011. Modeling viscoelastic dielectrics. J Mech Phys Sol, 59(3):637–650. https://doi.org/10.1016/j.jmps.2010.12.003
Jung K, Kim KJ, Choi HR, 2008. A self-sensing dielectric elastomer actuator. Sens Actuat A, 143(2):343–351. https://doi.org/10.1016/j.sna.2007.10.076
Kadooka K, Taya M, 2018. Review on viscoelastic behavior of dielectric polymers and their actuators. SPIE, 10594: 105940M. https://doi.org/10.1117/12.2295116
Kelly-Hayes M, 2010. Influence of age and health behaviors on stroke risk: lessons from longitudinal studies. J Am Geriatr Soc, 58(S2):S325–S328. https://doi.org/10.1111/j.1532-5415.2010.02915.x
Keplinger C, Kaltenbrunner M, Arnold N, et al., 2008. Capacitive extensometry for transient strain analysis of dielectric elastomer actuators. Appl Phys Lett, 92(19): 192903. https://doi.org/10.1063/1.2929383
Keplinger C, Kaltenbrunner M, Arnold N, et al., 2010. Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability. PNAS, 107(10):4505–4510. https://doi.org/10.1073/pnas.0913461107
Kim SY, Yeo M, Shin EJ, et al., 2015. Fabrication and evaluation of variable focus and large deformation planoconvex microlens based on non-ionic poly (vinyl chloride)/dibutyl adipate gels. Smart Mater Struct, 24(11): 115006. https://doi.org/10.1088/0964-1726/24/11/115006
Kim TJ, Liu YJ, Leng JS, 2018. Cauchy stresses and vibration frequencies for the instability parameters of dielectric elastomer actuators. J Appl Polym Sci, 135(21):46215. https://doi.org/10.1002/app.46215
Kofod G, 2008. The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation? J Phys D, 41(21):215405. https://doi.org/10.1088/0022-3727/41/21/215405
Kofod G, Wirges W, Paajanen M, et al., 2007. Energy minimization for self-organized structure formation and actuation. Appl Phys Lett, 90(8):081916. https://doi.org/10.1063/1.2695785
Kollosche M, Kofod G, Suo ZG, et al., 2015. Temporal evolution and instability in a viscoelastic dielectric elastomer. J Mech Phys Sol, 76:47–64. https://doi.org/10.1016/j.jmps.2014.11.013
Lee C, Kim M, Kim YJ, et al., 2017. Soft robot review. Int J Contr Autom Syst, 15(1):3–15. https://doi.org/10.1007/s12555-016-0462-3
Li B, Chen HL, Qiang JH, et al., 2011. Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation. J Phys D, 44(15):155301. https://doi.org/10.1088/0022-3727/44/15/155301
Li TF, Keplinger C, Baumgartner R, et al., 2013. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. J Mech Phys Sol, 61(2): 611–628. https://doi.org/10.1016/j.jmps.2012.09.006
Li Y, Hashimoto M, 2016. Design and prototyping of a novel lightweight walking assist wear using PVC gel soft actuators. Sens Actuat A, 239:26–44. https://doi.org/10.1016/j.sna.2016.01.017
Li Y, Hashimoto M, 2017. PVC gel soft actuator-based wearable assist wear for hip joint support during walking. Smart Mater Struct, 26(12):125003. https://doi.org/10.1088/1361-665X/aa9315
Li Y, Hashimoto M, 2019. Low-voltage planar PVC gel actuator with high performances. Sens Actuat B, 282:482–489. https://doi.org/10.1016/j.snb.2018.11.101
Li Y, Maeda Y, Hashimoto M, 2015. Lightweight, soft variable stiffness gel spats for walking assistance. Int J Adv Rob Syst, 12(12):175. https://doi.org/10.5772/61815
Liu F, Zhou JX, 2018. Shooting and arc-length continuation method for periodic solution and bifurcation of nonlinear oscillation of viscoelastic dielectric elastomers. J Appl Mech, 85(1):011005. https://doi.org/10.1115/1.4038327
Liu F, Sun WJ, Zhao X, et al., 2018. Method towards optimal design of dielectric elastomer actuated soft machines. Sci China Technol Sci, 61(7):959–964. https://doi.org/10.1007/s11431-017-9102-5
Liu HL, Zhang LQ, Yang D, et al., 2013. Mechanical, dielectric, and actuated strain of silicone elastomer filled with various types of TiO2. Soft Mater, 11(3):363–370. https://doi.org/10.1080/1539445X.2012.661821
Liu LW, Zhang Z, Li JR, et al., 2015. Stability of dielectric elastomer/carbon nanotube composites coupling electrostriction and polarization. Compos Part B, 78:35–41. https://doi.org/10.1016/j.compositesb.2015.03.069
Mirvakili SM, Hunter IW, 2018. Artificial muscles: mechanisms, applications, and challenges. Adv Mater, 30(6): 1704407. https://doi.org/10.1002/adma.201704407
O’Brien B, Thode J, Anderson I, et al., 2007. Integrated extension sensor based on resistance and voltage measurement for a dielectric elastomer. SPIE, 6524:652415. https://doi.org/10.1117/12.715823
Ogawa N, Hashimoto M, Takasaki M, et al., 2009. Characteristics evaluation of PVC gel actuators. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.2898–2903. https://doi.org/10.1109/IROS.2009.5354417
Park M, Park J, Jeong U, 2014. Design of conductive composite elastomers for stretchable electronics. Nano Today, 9(2):244–260. https://doi.org/10.1016/j.nantod.2014.04.00
Park WH, Bae JW, Shin EJ, et al., 2016. Development of a flexible and bendable vibrotactile actuator based on wave-shaped poly (vinyl chloride)/acetyl tributyl citrate gels for wearable electronic devices. Smart Mater Struct, 25(11):115020. https://doi.org/10.1088/0964-1726/25/11/115020
Park WH, Shin EJ, Yun S, et al., 2018. An enhanced soft vibrotactile actuator based on ePVC gel with silicon dioxide nanoparticles. IEEE Trans Hapt, 11(1):22–29. https://doi.org/10.1109/TOH.2018.2808176
Patra K, Sahu RK, 2015. A visco-hyperelastic approach to modelling rate-dependent large deformation of a dielectric acrylic elastomer. Int J Mech Mater Des, 11(1):79–90. https://doi.org/10.1007/s10999-014-9270-1
Pelrine RE, Kornbluh RD, Joseph JP, 1998. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuat A, 64(1):77–85. https://doi.org/10.1016/S0924-4247(97)01657-9
Pourazadi S, Ahmadi S, Menon C, 2014. Towards the development of active compression bandages using dielectric elastomer actuators. Smart Mater Struct, 23(6):065007. https://doi.org/10.1088/0964-1726/23/6/065007
Pourazadi S, Ahmadi S, Menon C, 2015. On the design of a DEA-based device to pot entially assist lower leg disorders: an analytical and FEM investigation accounting for nonlinearities of the leg and device deformations. Biomed Eng OnLine, 14(1):103. https://doi.org/10.1186/s12938-015-0088-3
Pourazadi S, Shagerdmootaab A, Chan H, et al., 2017. On the electrical safety of dielectric elastomer actuators in proximity to the human body. Smart Mater Struct, 26(11): 115007. https://doi.org/10.1088/1361-665X/aa89b1
Qin L, Tang YC, Gupta U, et al., 2018. A soft robot capable of 2D mobility and self-sensing for obstacle detection and avoidance. Smart Mater Struct, 27(4):045017. https://doi.org/10.1088/1361-665X/aab393
Rizzello G, Naso D, York A, et al., 2016. Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback. Smart Mater Struct, 25(3): 035034. https://doi.org/10.1088/0964-1726/25/3/035034
Rizzello G, Fugaro F, Naso D, et al., 2018. Simultaneous self-sensing of displacement and force for soft dielectric elastomer actuators. IEEE Rob Autom Lett, 3(2):1230–1236. https://doi.org/10.1109/LRA.2018.2795016
Romasanta LJ, López-Manchado MA, Verdejo R, 2015. Increasing the performance of dielectric elastomer actuators: a review from the materials perspective. Prog Polym Sci, 51:188–211. https://doi.org/10.1016/j.progpolymsci.2015.08.002
Rosset S, Shea HR, 2013. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl Phys A, 110(2): 281–307. https://doi.org/10.1007/s00339-012-7402-8
Sahoo BP, Naskar K, Choudhary RNP, et al., 2012. Dielectric relaxation behavior of conducting carbon black reinforced ethylene acrylic elastomer vulcanizates. J Appl Polym Sci, 124(1):678–688. https://doi.org/10.1002/app.35049
Shakun A, Poikelispää M, Das A, et al., 2018. Improved electromechanical response in acrylic rubber by different carbon-based fillers. Polym Eng Sci, 58(3):395–404. https://doi.org/10.1002/pen.24586
Sharma AK, Bajpayee S, Joglekar DM, et al., 2017. Dynamic instability of dielectric elastomer actuators subjected to unequal biaxial prestress. Smart Mater Struct, 26(11): 115019. https://doi.org/10.1088/1361-665X/aa8923
Sun WJ, Liu F, Ma ZQ, et al., 2016. Soft mobile robots driven by foldable dielectric elastomer actuators. J Appl Phys, 120(8):084901. https://doi.org/10.1063/1.4960718
Suo ZG, 2010. Theory of dielectric elastomers. Acta Mech Sol Sin, 23(6):549–578. https://doi.org/10.1016/S0894-9166(11)60004-9
Tang C, Li B, Zou CB, et al., 2018. Voltage-induced wrinkle performance in a hydrogel by dielectric elastomer actuation. Polymers, 10(7):697. https://doi.org/10.3390/polym10070697
Tokoro H, Hashimoto M, 2014. Characteristics of a nonwoven PVC gel actuator. Proc IEEE/ASME Int Conf on Advanced Intelligent Mechatronics, p.100–105. https://doi.org/10.1109/AIM.2014.6878062
Tran D, Li J, Xuan FZ, 2017. A method to analyze the voltage-actuation response of a pre-strained circular dielectric elastomer actuator model. J Shanghai Jiao Tong Univ (Sci), 22(3):334–342. https://doi.org/10.1007/s12204-017-1840-6
Wang HM, Qu SX, 2016. Constitutive models of artificial muscles: a review. J Zhejiang Univ-Sci A (Appl Phys & Eng), 17(1):22–36. https://doi.org/10.1631/jzus.A1500207
Weber LM, Stein J, 2018. The use of robots in stroke rehabilitation: a narrative review. NeuroRehabilitation, 43(1): 99–110. https://doi.org/10.3233/NRE-172408
Wissler M, Mazza E, 2005. Modeling and simulation of dielectric elastomer actuators. Smart Mater Struct, 14(6): 1396–1402. https://doi.org/10.1088/0964-1726/14/6/032
Xia H, Takasaki M, Hirai T, 2010. Actuation mechanism of plasticized PVC by electric field. Sens Actuat A, 157(2): 307–312. https://doi.org/10.1016/j.sna.2009.11.028
Xu M, Jin BY, He R, et al., 2016. Adaptive lenticular microlens array based on voltage-induced waves at the surface of polyvinyl chloride/dibutyl phthalate gels. Opt Expr, 24(8):8142–8148. https://doi.org/10.1364/OE.24.008142
Yamano M, Ogawa N, Hashimoto M, et al., 2009. A contraction type soft actuator using poly vinyl chloride gel. Proc IEEE Int Conf on Robotics and Biomimetics, p.745–750. https://doi.org/10.1109/ROBIO.2009.4913093
Yang SY, Zhao XH, Sharma P, 2017. Avoiding the pull-in instability of a dielectric elastomer film and the potential for increased actuation and energy harvesting. Soft Matter, 13(26):4552–4558. https://doi.org/10.1039/c7sm00542c
Yuan W, Hu LB, Yu ZB, et al., 2008. Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv Mater, 20(3):621–625. https://doi.org/10.1002/adma.200701018
Zhang R, Iravani P, Keogh P, 2017. Closed loop control of force operation in a novel self-sensing dielectric elastomer actuator. Sens Actuat A, 264:123–132. https://doi.org/10.1016/j.sna.2017.08.013
Zhu FB, Zhang CL, Qian J, et al., 2016. Mechanics of dielectric elastomers: materials, structures, and devices. J Zhejiang Univ-Sci A (Appl Phys & Eng), 17(1):1–21. https://doi.org/10.1631/jzus.A1500125
Zou J, Gu GY, 2018. Modeling the viscoelastic hysteresis of dielectric elastomer actuators with a modified ratedependent prandtl–ishlinskii model. Polymers, 10(5):525. https://doi.org/10.3390/polym10050525
Zulhash UM, Masaki Y, Masashi W, et al., 2001. Electrically induced creeping and bending deformation of plasticized poly (vinyl chloride). Chem Lett, 30(4):360–361. https://doi.org/10.1246/cl.2001.360
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the the National Natural Science Foundation of China (No. 51775485)
Dr. Tao LIU, corresponding author of this invited review article, received M. Eng. degree in mechanical engineering from the Harbin Institute of Technology, Harbin, China, in 2003 and Ph. D. in engineering from Kochi University of Technology, Kochi, Japan, in 2006. He was an assistant professor in the Department of Intelligent Mechanical Systems Engineering, Kochi University of Technology, Japan, from 2009 to 2013. He is currently a professor at the State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, China, and Director of Institute of Micro-/Nanotechnology and Precision Engineering in the Department of Mechanical Engineering, Zhejiang University, China. His current research interests include wearable sensor systems, rehabilitation robots, biomechanics, and human motion analysis.
Rights and permissions
About this article
Cite this article
Dong, Ty., Zhang, Xl. & Liu, T. Artificial muscles for wearable assistance and rehabilitation. Frontiers Inf Technol Electronic Eng 19, 1303–1315 (2018). https://doi.org/10.1631/FITEE.1800618
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1800618
Key words
- Artificial muscle
- Smart material
- Dielectric elastomers (DE)
- Polyvinyl chloride (PVC) gel
- Actuator
- Wearable assistance
- Rehabilitation