Abstract
A dynamic network refers to a graph structure whose nodes and/or links dynamically change over time. Existing visualization and analysis techniques focus mainly on summarizing and revealing the primary evolution patterns of the network structure. Little work focuses on detecting anomalous changing patterns in the dynamic network, the rare occurrence of which could damage the development of the entire structure. In this study, we introduce the first visual analysis system RCAnalyzer designed for detecting rare changes of sub-structures in a dynamic network. The proposed system employs a rare category detection algorithm to identify anomalous changing structures and visualize them in the context to help oracles examine the analysis results and label the data. In particular, a novel visualization is introduced, which represents the snapshots of a dynamic network in a series of connected triangular matrices. Hierarchical clustering and optimal tree cut are performed on each matrix to illustrate the detected rare change of nodes and links in the context of their surrounding structures. We evaluate our technique via a case study and a user study. The evaluation results verify the effectiveness of our system.
Similar content being viewed by others
References
Archambault D, Purchase H, Pinaud B, 2011. Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Trans Vis Comput Graph, 17(4):539–552. https://doi.org/10.1109/TVCG.2010.78
Bach B, Pietriga E, Fekete JD, 2014a. GraphDiaries: animated transitions and temporal navigation for dynamic networks. IEEE Trans Vis Comput Graph, 20(5):740–754. https://doi.org/10.1109/TVCG.2013.254
Bach B, Pietriga E, Fekete JD, 2014b. Visualizing dynamic networks with matrix cubes. SIGCHI Conf on Human Factors in Computing Systems, p.877–886. https://doi.org/10.1145/2556288.2557010
Bach B, Henry-Riche N, Dwyer T, et al., 2015. Small MultiPiles: piling time to explore temporal patterns in dynamic networks. Comput Graph Forum, 34(3):31–40. https://doi.org/10.1111/cgf.12615
Beck F, Burch M, Diehl S, et al., 2014. The state of the art in visualizing dynamic graphs. Eurographics Conf on Visualization, p.1–21. https://doi.org/10.2312/eurovisstar.20141174
Bhuyan MH, Bhattacharyya DK, Kalita JK, 2014. Network anomaly detection: methods, systems, and tools. IEEE Commun Surv Tutor, 16(1):303–336. https://doi.org/10.1109/SURV.2013.052213.00046
Blanch R, Dautriche R, Bisson G, 2015. Dendrogramix: a hybrid tree-matrix visualization technique to support interactive exploration of dendrograms. Proc IEEE Pacific Visualization Symp, p.31–38. https://doi.org/10.1109/PACIFICVIS.2015.7156353
Brandes U, Nick B, 2011. Asymmetric relations in longitudinal social networks. IEEE Trans Vis Comput Graph, 17(12):2283–2290. https://doi.org/10.1109/TVCG.2011.169
Burch M, Schmidt B, Weiskopf D, 2013. A matrix-based visualization for exploring dynamic compound digraphs. 17th Int Conf on Information Visualisation, p.66–73. https://doi.org/10.1109/IV.2013.8
Cao N, Gotz D, Sun JM, et al., 2011. DICON: interactive visual analysis of multidimensional clusters. IEEE Trans Vis Comput Graph, 17(12):2581–2590. https://doi.org/10.1109/TVCG.2011.188
Cao N, Shi C, Lin S, et al., 2016. TargetVue: visual analysis of anomalous user behaviors in online communication systems. IEEE Trans Vis Comput Graph, 22(1):280–289. https://doi.org/10.1109/TVCG.2015.2467196
Chandola V, Banerjee A, Kumar V, 2009. Anomaly detection: a survey. ACM Comput Surv, 41(3):15. https://doi.org/10.1145/1541880.1541882
Corchado E, Herrero Á, 2011. Neural visualization of network traffic data for intrusion detection. Appl Soft Comput, 11(2):2042–2056. https://doi.org/10.1016/j.asoc.2010.07.002
Fan X, Li CL, Yuan XR, et al., 2019. An interactive visual analytics approach for network anomaly detection through smart labeling. J Vis, 22(5):955–971. https://doi.org/10.1007/s12650-019-00580-7
Feng KC, Wang CL, Shen HW, et al., 2012. Coherent timevarying graph drawing with multifocus+context interaction. IEEE Trans Vis Comput Graph, 18(8):1330–1342. https://doi.org/10.1109/TVCG.2011.128
Gansner ER, Koren Y, North SC, 2005. Topological fisheye views for visualizing large graphs. IEEE Trans Vis Comput Graph, 11(4):457–468. https://doi.org/10.1109/TVCG.2005.66
Haberkorn T, Koglbauer I, Braunstingl R, 2014. Traffic displays for visual flight indicating track and priority cues. IEEE Trans Human Mach Syst, 44(6):755–766. https://doi.org/10.1109/THMS.2014.2352496
Havre S, Hetzler B, Nowell L, 2000. ThemeRiver: visualizing theme changes over time. IEEE Symp on Information Visualization, p.115–123. https://doi.org/10.1109/INFVIS.2000.885098
He JR, Carbonell JG, 2008. Nearest-neighbor-based active learning for rare category detection. 20th Int Conf on Neural Information Processing Systems, p.633–640.
He JR, Carbonell JG, 2009. Prior-free rare category detection. SIAM Int Conf on Data Mining, p.155–163.
He JR, Liu Y, Lawrence R, 2008. Graph-based rare category detection. 8th IEEE Int Conf on Data Mining, p.833–838. https://doi.org/10.1109/ICDM.2008.122
He JR, Tong HH, Carbonell JG, 2010. Rare category characterization. Proc IEEE Int Conf on Data Mining, p.226–235. https://doi.org/10.1109/ICDM.2010.154
Heard NA, Weston DJ, Platanioti K, et al., 2010. Bayesian anomaly detection methods for social networks. Ann Appl Stat, 4(2):645–662. https://doi.org/10.1214/10-AOAS329
Henry N, Fekete JD, McGuffin MJ, 2007. NodeTrix: a hybrid visualization of social networks. IEEE Trans Vis Comput Graph, 13(6):1302–1309. https://doi.org/10.1109/TVCG.2007.70582
Hlawatsch M, Burch M, Weiskopf D, 2014. Visual adjacency lists for dynamic graphs. IEEE Trans Vis Comput Graph, 20(11):1590–1603. https://doi.org/10.1109/TVCG.2014.2322594
Huang H, He QM, He JF, et al., 2011. RADAR: rare category detection via computation of boundary degree. Proc 15th Pacific-Asia Conf on Advances in Knowledge Discovery and Data Mining, p.258–269. https://doi.org/10.1007/978-3-642-20847-8_22
Huang H, He QM, Chiew K, et al., 2013. CLOVER: a faster prior-free approach to rare-category detection. Knowl Inform Syst, 35(3):713–736. https://doi.org/10.1007/s10115-012-0530-9
Inselberg A, 2009. Parallel Coordinates: Visual Multidimensional Geometry and its Applications. Springer, New York, USA. https://doi.org/10.1007/978-0-387-68628-8
Isenberg P, Heimerl F, Koch S, et al., 2017. Vispubdata. org: a metadata collection about IEEE visualization (VIS) publications. IEEE Trans Vis Comput Graph, 23(9):2199–2206. https://doi.org/10.1109/TVCG.2016.2615308
Jolliffe, IT, 1986. Principal Component Analysis. Springer, Berlin, Germany.
Jovanovic J, Bagheri E, Gasevic D, 2015. Comprehension and learning of social goals through visualization. IEEE Trans Human Mach Syst, 45(4):478–489. https://doi.org/10.1109/THMS.2015.2419083
Lin HF, Gao SY, Gotz D, et al., 2018. RCLens: interactive rare category exploration and identification. IEEE Trans Vis Comput Graph, 24(7):2223–2237. https://doi.org/10.1109/TVCG.2017.2711030
Liu Y, Dai S, Wang C, et al., 2017. GenealogyVis: a system for visual analysis of multidimensional genealogical data. IEEE Trans Human Mach Syst, 47(6):873–885. https://doi.org/10.1109/THMS.2017.2693236
Newman MEJ, Girvan M, 2004. Finding and evaluating community structure in networks. Phys Rev E, 69(2): 026113. https://doi.org/10.1103/PhysRevE.69.026113
Oelke D, Kokkinakis D, Keim DA, 2013. Fingerprint matrices: uncovering the dynamics of social networks in prose literature. Comput Graph Forum, 32(3pt4):371-380. https://doi.org/10.1111/cgf.12124
Pelleg D, Moore AW, 2005. Active learning for anomaly and rare-category detection. Proc 17th Int Conf on Neural Information Processing Systems, p.1073–1080.
Ranshous S, Shen ST, Koutra D, et al., 2015. Anomaly detection in dynamic networks: a survey. WIREs Comput Stat, 7(3):223–247. https://doi.org/10.1002/wics.1347
Riehmann P, Hanfler M, Froehlich B, 2005. Interactive Sankey diagrams. IEEE Symp on Information Visualization, p.233–240. https://doi.org/10.1109/INFVIS.2005.1532152
Sun JM, Faloutsos C, Papadimitriou S, et al., 2007. Graph-Scope: parameter-free mining of large time-evolving graphs. Proc 13th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.687–696. https://doi.org/10.1145/1281192.1281266
Sundarararajan PK, Mengshoel OJ, Selker T, 2013. Multifocus and multi-window techniques for interactive network exploration. SPIE Electronic Imaging, p.282–296. https://doi.org/10.1117/12.2005659
Teoh ST, Ma KL, Wu SF, et al., 2002. Case study: interactive visualization for Internet security. Proc Conf on IEEE Visualization, p.505–508. https://doi.org/10.1109/VISUAL.2002.1183816
Thom D, Bosch H, Koch S, et al., 2012. Spatiotemporal anomaly detection through visual analysis of geolocated Twitter messages. Proc Pacific Visualization Symp, p.41–48. https://doi.org/10.1109/PacificVis.2012.6183572
Tsai CF, Hsu YF, Lin CY, et al., 2009. Intrusion detection by machine learning: a review. Expert Syst Appl, 36(10):11994–12000. https://doi.org/10.1016/j.eswa.2009.05.029
van den Elzen S, Holten D, Blaas J, et al., 2016. Reducing snapshots to points: a visual analytics approach to dynamic network exploration. IEEE Trans Vis Comput Graph, 22(1):1–10. https://doi.org/10.1109/TVCG.2015.2468078
Vatturi P, Wong WK, 2008. Category detection using hierarchical mean shift. Proc 15th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.847–856. https://doi.org/10.1145/1557019.1557112
Vehlow C, Beck F, Auwärter P, et al., 2015. Visualizing the evolution of communities in dynamic graphs. Comput Graph Forum, 34(1):277–288. https://doi.org/10.1111/cgf.12512
Wang C, Xiao Z, Liu Y, et al., 2013. SentiView: sentiment analysis and visualization for Internet popular topics. IEEE Trans Human Mach Syst, 43(6):620–630. https://doi.org/10.1109/THMS.2013.2285047
Xu PP, Mei HH, Liu R, et al., 2017. ViDX: visual diagnostics of assembly line performance in smart factories. IEEE Trans Vis Comput Graph, 23(1):291–300. https://doi.org/10.1109/TVCG.2016.2598664
Yee KP, Fisher D, Dhamija R, et al., 2001. Animated exploration of dynamic graphs with radial layout. IEEE Symp on Information Visualization, p.43–50. https://doi.org/10.1109/INFVIS.2001.963279
Zhang TY, Wang XM, Li ZZ, et al., 2017. A survey of network anomaly visualization. Sci China Inform Sci, 60(12):121101. https://doi.org/10.1007/s11432-016-0428-2
Zhao J, Cao N, Wen Z, et al., 2014. #FluxFlow: visual analysis of anomalous information spreading on social media. IEEE Trans Vis Comput Graph, 20(12):1773–1782. https://doi.org/10.1109/TVCG.2014.2346922
Zhao J, Liu Z, Dontcheva M, et al., 2015. MatrixWave: visual comparison of event sequence data. Proc 33rd Annual ACM Conf on Human Factors in Computing Systems, p.259–268. https://doi.org/10.1145/2702123.2702419
Zhou DW, He JR, Candan KS, et al., 2015a. MUVIR: multiview rare category detection. Proc 24th Int Joint Conf on Artificial Intelligence, p.4098–4104.
Zhou DW, Wang KY, Cao N, et al., 2015b. Rare category detection on time-evolving graphs. IEEE Int Conf on Data Mining, p.1135–1140. https://doi.org/10.1109/ICDM.2015.120
Zhou DW, Karthikeyan A, Wang KY, et al., 2017. Discovering rare categories from graph streams. Data Min Knowl Discov, 31(2):400–423. https://doi.org/10.1007/s10618-016-0478-6
Author information
Authors and Affiliations
Contributions
Dong-ming HAN processed the data and designed the experiment. Fang-zhou GUO designed the research and drafted the manuscript. Da-wei ZHOU provided the RCD algorithm. Nan CAO and Wei CHEN helped organize the manuscript. Jing-rui HE and Ming-liang XU polished the paper. Jia-cheng PAN implemented the interface and finalized the paper.
Corresponding author
Additional information
Compliance with ethics guidelines
Jia-cheng PAN, Dong-ming HAN, Fang-zhou GUO, Dawei ZHOU, Nan CAO, Jing-rui HE, Ming-liang XU, and Wei CHEN declare that they have no conflict of interest.
The Ethics Committee of Zhejiang University had reviewed the experimental procedure and method, and approved this experiment. Before the experiment, all subjects signed the informed written consent and agreed to participate in this experiment.
Project supported by the National Natural Science Foundation of China (Nos. U1866602, 61772456, U1736109, and 61972122)
Rights and permissions
About this article
Cite this article
Pan, Jc., Han, Dm., Guo, Fz. et al. RCAnalyzer: visual analytics of rare categories in dynamic networks. Front Inform Technol Electron Eng 21, 491–506 (2020). https://doi.org/10.1631/FITEE.1900310
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1900310