Abstract
Two types of cascading decomposition problems of Boolean control networks are investigated using a graph-theoretical method. A new graphic concept called nested perfect equal vertex partition (NPEVP) is proposed. Based on NPEVP, the necessary and sufficient graphic conditions for solvability of the cascading decomposition problems are obtained. Given the proposed graphic conditions, the logical coordinate transformations are constructively obtained to realize the corresponding cascading decomposition forms. Finally, two illustrative examples are provided to validate the results.
Similar content being viewed by others
References
Albert R, Othmer HG, 2003. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol, 223(1):1–18. https://doi.org/10.1016/S0022-5193(03)00035-3
Borûvka O, 1974. Foundations of the Theory of Groupoids and Groups. VEB Deutscher Verlag der Wissenschaften, Berlin, Germany.
Chaves M, Albert R, Sontag ED, 2005. Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol, 235(3):431–449. https://doi.org/10.1016/j.jtbi.2005.01.023
Cheng DZ, 2011. Disturbance decoupling of Boolean control networks. IEEE Trans Autom Contr, 56(1):2–10. https://doi.org/10.1109/TAC.2010.2050161
Cheng DZ, Qi HS, 2009. Controllability and observability of Boolean control networks. Automatica, 45(7):1659–1667. https://doi.org/10.1016/j.automatica.2009.03.006
Cheng DZ, Qi HS, 2010a. A linear representation of dynamics of Boolean networks. IEEE Trans Autom Contr, 55(10):2251–2258. https://doi.org/10.1109/TAC.2010.2043294
Cheng DZ, Qi HS, 2010b. State-space analysis of Boolean networks. IEEE Trans Neur Netw, 21(4):584–594. https://doi.org/10.1109/TNN.2009.2039802
Cheng DZ, Xu XR, 2013. Bi-decomposition of multi-valued logical functions and its applications. Automatica, 49(7):1979–1985. https://doi.org/10.1016/j.automatica.2013.03.013
Cheng DZ, Li ZQ, Qi HS, 2010. Realization of Boolean control networks. Automatica, 46(1):62–69. https://doi.org/10.1016/j.automatica.2009.10.036
Cheng DZ, Qi HS, Li ZQ, 2011. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. Springer, London, UK. https://doi.org/10.1007/978-0-85729-097-7
Ching WK, Zhang SQ, Ng MK, et al., 2007. An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks. Bioinformatics, 23(12):1511–1518. https://doi.org/10.1093/bioinformatics/btm142
Datta A, Choudhary A, Bittner M, 2004. External control in Markovian genetic regulatory networks: the imperfect information case. Bioinformatics, 20(6):924–930. https://doi.org/10.1093/bioinformatics/bth008
Farrow C, Heidel J, Maloney J, et al., 2004. Scalar equations for synchronous Boolean networks with biological applications. IEEE Trans Neur Netw, 15(2):348–354. https://doi.org/10.1109/TNN.2004.824262
Fornasini E, Valcher ME, 2013. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Autom Contr, 58(6):1390–1401. https://doi.org/10.1109/TAC.2012.2231592
Huang S, 2002. Regulation of cellular states in mammalian cells from a genome wide view. Proc Gene Regulations and Metabolism — Postgenomic Computational Approaches, p.181–220.
Huang S, Ingber DE, 2000. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res, 261(1):91–103.
Kauffman SA, 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437–467. https://doi.org/10.1016/0022-5193(69)90015-0
Klamt S, Saez-Rodriguez J, Lindquist JA, et al., 2006. A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform, 7:56. https://doi.org/10.1186/1471-2105-7-56
Laschov D, Margaliot M, 2011. A maximum principle for single-input Boolean control networks. IEEE Trans Autom Contr, 56(4):913–917. https://doi.org/10.1109/TAC.2010.2101430
Li FF, Sun JT, 2012. Controllability and optimal control of a temporal Boolean network. Neur Netw, 34:10–17. https://doi.org/10.1016/j.neunet.2012.06.002
Li HT, Wang YZ, 2017. Further results on feedback stabilization control design of Boolean control networks. Automatica, 83:303–308. https://doi.org/10.1016/j.automatica.2017.06.043
Li HT, Xie LH, Wang YZ, 2017. Output regulation of Boolean control networks. IEEE Trans Autom Contr, 62(6):2993–2998. https://doi.org/10.1109/TAC.2016.2606600
Li R, Yang M, Chu TG, 2013. State feedback stabilization for Boolean control networks. IEEE Trans Autom Contr, 58(7):1853–1857. https://doi.org/10.1109/TAC.2013.2238092
Li YF, Zhu JD, 2019. On disturbance decoupling problem of Boolean control network. Asian J Contr, in press. https://doi.org/10.1002/asjc.2115
Liu Y, Chen HW, Lu JQ, et al., 2015. Controllability of probabilistic Boolean control networks based on transition probability matrices. Automatica, 52:340–345. https://doi.org/10.1016/j.automatica.2014.12.018
Liu Y, Li BW, Chen HW, et al., 2017a. Function perturbations on singular Boolean networks. Automatica, 84:36–42. https://doi.org/10.1016/j.automatica.2017.06.035
Liu Y, Li BW, Lu JQ, et al., 2017b. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans Autom Contr, 62(12):6595–6601. https://doi.org/10.1109/TAC.2017.2715181
Lu JQ, Zhong J, Huang C, et al., 2016. On pinning controllability of Boolean control networks. IEEE Trans Autom Contr, 61(6):1658–1663. https://doi.org/10.1109/TAC.2015.2478123
Lu JQ, Sun LJ, Liu Y, et al., 2018. Stabilization of Boolean control networks under aperiodic sampled-data control. SIAM J Contr Optim, 56(6):4385–4404. https://doi.org/10.1137/18M1169308
Meng M, Lam J, Feng JE, et al., 2016. l1-gain analysis and model reduction problem for Boolean control networks. Inform Sci, 348:68–83. https://doi.org/10.1016/j.ins.2016.02.010
Potůĉek R, 2014. Construction of the smallest common coarser of two and three set partitions. Anal Univ Ovid Const Ser Matem, 22(1):237–246. https://doi.org/10.2478/auom-2014-0019
Wonham WM, 1974. Linear Multivariable Control: a Geometric Approach. Springer-Verlag, Berlin, Germany. https://doi.org/10.1007/978-3-662-22673-5
Wu YH, Shen TL, 2015. An algebraic expression of finite horizon optimal control algorithm for stochastic logical dynamical systems. Syst Contr Lett, 82:108–114. https://doi.org/10.1016/j.sysconle.2015.04.007
Yu YY, Feng JE, Pan JF, et al., 2019. Block decoupling of Boolean control networks. IEEE Trans Autom Contr, 64(8):3129–3140. https://doi.org/10.1109/TAC.2018.2880411
Zhao Y, Li ZQ, Cheng DZ, 2011. Optimal control of logical control networks. IEEE Trans Autom Contr, 56(8):1766–1776. https://doi.org/10.1109/TAC.2010.2092290
Zhao Y, Kim J, Filippone M, 2013. Aggregation algorithm towards large-scale Boolean network analysis. IEEE Trans Autom Contr, 58(8):1976–1985. https://doi.org/10.1109/TAC.2013.2251819
Zou YL, Zhu JD, 2014. System decomposition with respect to inputs for Boolean control networks. Automatica, 50(4):1304–1309. https://doi.org/10.1016/j.automatica.2014.02.039
Zou YL, Zhu JD, 2015. Kalman decomposition for Boolean control networks. Automatica, 54:65–71. https://doi.org/10.1016/j.automatica.2015.01.023
Zou YL, Zhu JD, 2017. Graph theory methods for decomposition w.r.t. outputs of Boolean control networks. J Syst Sci Compl, 30(3):519–534. https://doi.org/10.1007/s11424-016-5131-3
Zou YL, Zhu JD, Liu YR, 2018. Cascading state-space decomposition of Boolean control networks. Proc 37th Chinese Control Conf, p.6326–6331.
Zou YL, Zhu JD, Liu YR, 2019. Cascading state-space decomposition of Boolean control networks by nested method. J Franklin Inst, 356(16):10015–10030. https://doi.org/10.1016/j.jfranklin.2018.10.042
Author information
Authors and Affiliations
Corresponding author
Additional information
Compliance with ethics guidelines
Yi-feng LI and Jian-dong ZHU declare that they have no conflict of interest.
Project supported by the National Natural Science Foundation of China (No. 61673012)
Rights and permissions
About this article
Cite this article
Li, Yf., Zhu, Jd. Cascading decomposition of Boolean control networks: a graph-theoretical method. Front Inform Technol Electron Eng 21, 304–315 (2020). https://doi.org/10.1631/FITEE.1900422
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1900422