Abstract
Multiple-input multiple-output (MIMO) technique is a key technique for communication in the future. It can effectively enhance channel capacity. For future fifth-generation (5G) terminals, it is still a challenging task to realize desirable isolation within a compact size. To achieve an acceptable isolation level, many decoupling methods have been developed. We review the most recent research on decoupling methods, including the employment of external decoupling structures, orthogonal modes, and reduction of ground effect, and discuss the development trends of the MIMO array in 5G smartphones.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Al-Dulaimi A, Al-Rubaye S, Ni Q, et al., 2015. 5G communications race: pursuit of more capacity triggers LTE in unlicensed band. IEEE Veh Technol Mag, 10(1):43–51. https://doi.org/10.1109/MVT.2014.2380631
Al-Hadi AA, Ilvonen J, Valkonen R, et al., 2014. Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band. Microw Opt Technol Lett, 56:1323–1327. https://doi.org/10.1002/mop.28316
Ban YL, Li C, Sim CYD, et al., 2016. 4G/5G multiple antennas for future multi-mode smartphone applications. IEEE Access, 4:2981–2988. https://doi.org/10.1109/ACCESS.2016.2582786
Chen QG, Lin HW, Wang JP, et al., 2019, Single ring slot-based antennas for metal-rimmed 4G/5G smartphones. IEEE Trans Antenn Propag, 67(3): 1476–1487. https://doi.org/10.1109/TAP.2018.2883686
Deng CJ, Liu D, Lv X, 2019. Tightly-arranged four-element MIMO antennas for 5G mobile terminals. IEEE Trans Antenn Propag, 67(10):6353–6361. https://doi.org/10.1109/TAP.2019.2922757
Deng JY, Yao J, Sun DQ, et al., 2018. Ten-element MIMO antenna for 5G terminals. Microw Opt Technol Lett, 60(12):3045–3049. https://doi.org/10.1002/mop.31404
Diallo A, Luxey C, Le Thuc P, et al., 2006. Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands. IEEE Trans Antenn Propag, 54(11):3063–3074. https://doi.org/10.1109/TAP.2006.883981
Ghalib A, Sharawi MS, 2017. TCM analysis of defected ground structures for MIMO antenna designs in mobile terminals. IEEE Access, 5:19680–19692. https://doi.org/10.1109/ACCESS.2017.2739419
Guo J, Cui L, Li C, et al., 2018. Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications. IEEE Trans Antenn Propag, 66(12):7412–7417. https://doi.org/10.1109/TAP.2018.2872130
Hong WB, 2017. Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift. IEEE Microw Mag, 18(7):86–102. https://doi.org/10.1109/MMM.2017.2740538
Huang C, Jiao YC, Weng ZB, 2018. Novel compact CRLH-TL-based tri-band MIMO antenna element for the 5G mobile handsets. Microw Opt Technol Lett, 60(10):2559–2564. https://doi.org/10.1002/mop.31366
ITU, 2015. World Radio Communication Conference Allocates Spectrum for Future Innovation, Conference Outcomes to Spur Long-term Investments in ICT Industry. http://www.itu.int/net/pressoffice/press_releases/2015/56.aspx
Jiang W, Liu B, Cui YQ, et al., 2019a. High-isolation eight-element MIMO array for 5G smartphone applications. IEEE Access, 7:34104–34112. https://doi.org/10.1109/ACCESS.2019.2904647
Jiang W, Cui YQ, Liu B, et al., 2019b. A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications. IEEE Access, 7:112554–112563. https://doi.org/10.1109/ACCESS.2019.2934892
Jin YN, Ko M, O YJ, et al., 2019. A planar UWB MIMO antenna with gain enhancement and isolation improvement for the 5G mobile platform. Microw Opt Technol Lett, 61(4):990–998. https://doi.org/10.1002/mop.31685
Li MY, Ban YL, Xu ZQ, et al., 2016. Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Trans Antenn Propag, 64(9):3820–3830. https://doi.org/10.1109/TAP.2016.2583501
Li MY, Xu ZQ, Ban YL, et al., 2017. Eight-port orthogonally dual-polarized MIMO antennas using loop structures for 5G smartphone. IET Microw Antennas Propag, 11(12):1810–1816. https://doi.org/10.1049/iet-map.2017.0230
Li MY, Ban YL, Xu ZQ, et al., 2018. Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access, 6:6160–6170. https://doi.org/10.1109/ACCESS.2017.2781705
Li YX, Sim CYD, Luo Y, et al., 2018a. 12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications. IEEE Access, 6:344–354. https://doi.org/10.1109/ACCESS.2017.2763161
Li YX, Sim CYD, Luo Y, et al., 2018b. Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphone. IEEE Access, 6:28041–28053. https://doi.org/10.1109/ACCESS.2018.2838337
Li YX, Sim CYD, Luo Y, et al., 2019. High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones. IEEE Trans Antenn Propag, 67(6):3820–3830. https://doi.org/10.1109/TAP.2019.2902751
Liu DQ, Zhang M, Luo HJ, et al., 2018. Dual-band platform-free PIFA for 5G MIMO application of mobile devices. IEEE Trans Antenn Propag, 66(11):6328–6333. https://doi.org/10.1109/TAP.2018.2863109
Liu DQ, Luo HJ, Zhang M, et al., 2019. An extremely low-profile wideband MIMO antenna for 5G smart-phones. IEEE Trans Antenn Propag, 67(9):5772–5780. https://doi.org/10.1109/TAP.2019.2908261
Liu Y, Ren AD, Liu H, et al., 2019. Eight-port MIMO array using characteristic mode theory for 5G smartphone applications. IEEE Access, 7:45679–45692. https://doi.org/10.1109/ACCESS.2019.2909070
Lu JY, Chang HJ, Wong KL, 2015. 10-antenna array in the smartphone for the 3.6-GHz MIMO operation. Proc IEEE Int Symp on Antennas and Propagation & USNC/URSI National Radio Science Meeting, p. 1220–1221. https://doi.org/10.1109/APS.2015.7304999
Lu JY, Wong KL, Li WY, 2016. Compact eight-antenna array in the smartphone for the 3.5-GHz LTE 8×8 MIMO operation. Proc IEEE 5th Asia-Pacific Conf on Antennas and Propagation, p.323–324. https://doi.org/10.1109/APCAP.2016.7843224
Parchin NO, Al-Yasir YIA, Ali AH, et al., 2019. Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications. IEEE Access, 7:15612–15622. https://doi.org/10.1109/ACCESS.2019.2893112
Paulraj A, Nabar R, Gore D, 2003. Introduction to Space-Time Wireless Communications. Cambridge University Press, Cambridge, UK.
Qin ZJ, Wen GY, Zhang M, et al., 2016. Printed eight-element MIMO system for compact and thin 5G mobile handset. Electron Lett, 52(6):416–418. https://doi.org/10.1049/el.2015.3960
Qu LY, Lee H, Shin H, et al., 2017. MIMO antennas using controlled orthogonal characteristic modes by metal rims. IET Microw Antenn Propag, 11(7):1009–1015. https://doi.org/10.1049/iet-map.2016.0995
Ren AD, Liu Y, Sim CYD, 2019. A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone. IEEE Trans Antenn Propag, 67(10):6430–6438. https://doi.org/10.1109/TAP.2019.2920306
Sun LB, Feng HG, Li Y, 2018a. Tightly arranged orthogonal mode antenna for 5G MIMO mobile terminal. Microw Opt Technol Lett, 60(7):1751–1756. https://doi.org/10.1002/mop.31240
Sun LB, Feng HG, Li Y, et al., 2018b. Compact 5G MIMO mobile phone antennas with tightly arranged orthogonalmode pairs. IEEE Trans Antenn Propag, 66(11):6364–6369. https://doi.org/10.1109/TAP.2018.2864674
Tsai CY, Wong KL, Li WY, 2018. Experimental results of the multi-GBPs smartphone with 20 multi-input multi-output (MIMO) antennas in the 20×12 MIMO operation. Microw Opt Technol Lett, 60(8):2001–2010. https://doi.org/10.1002/mop.31289
Wong KL, Lu JY, Chen LY, et al., 2015. 16-antenna array in the smartphone for the 3.5-GHz MIMO operation. Asia-Pacific Microwave Conf, p.1–3. https://doi.org/10.1109/APMC.2015.7411764
Wong KL, Lu JY, Chen LY, et al., 2016. 8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone. Microw Opt Technol Lett, 58(1):174–181. https://doi.org/10.1002/mop.29527
Wong KL, Tsai CY, Lu JY, 2017. Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone. IEEE Trans Antenn Propag, 65(4):1765–1778. https://doi.org/10.1109/TAP.2017.2670534
Wong KL, Chang HJ, Li WY, 2018a. Integrated triplewideband triple-inverted-F antenna covering 617-960/1710-2690/3300-4200 MHz for 4G/5G communications in the smartphone. Microw Opt Technol Lett, 60(9):2091–2096. https://doi.org/10.1002/mop.31314
Wong KL, Chen YH, Li WY, 2018b. Decoupled compact ultra-wideband MIMO antennas covering 3300–6000 MHz for the fifth-generation mobile and 5 GHz WLAN operations in the future smartphone. Microw Opt Technol Lett, 60(10):2345–2351. https://doi.org/10.1002/mop.31400
Wong KL, Lin BW, Lin SE, 2019a. High-isolation conjoined loop multi–input multi-output antennas for the fifth-generation tablet device. Microw Opt Technol Lett, 61(1):111–119. https://doi.org/10.1002/mop.31505
Wong KL, Chen YH, Li WY, 2019b. Conjoined ultra-wideband (2300–6000 MHz) dual antennas for LTE HB/WiFi/5G multi-input multi-output operation in the fifth-generation tablet device. Microw Opt Technol Lett, 61(8):1958–1963. https://doi.org/10.1002/mop.31822
Xu H, Zhou H, Gao S, et al., 2017. Multimode decoupling technique with independent tuning characteristic for mobile terminals. IEEE Trans Antenn Propag, 65(12):6739–6751. https://doi.org/10.1109/TAP.2017.2754445
Zhang XG, Li YX, Wang W, et al., 2019. Ultra-wideband 8-port MIMO antenna array for 5G metal-frame smartphones. IEEE Access, 7:72273–72282. https://doi.org/10.1109/ACCESS.2019.2919622
Zhao AP, Ren ZY, 2019a. Multiple-input and multiple-output antenna system with self-isolated antenna element for fifth-generation mobile terminals. Microw Opt Technol Lett, 61(1):20–27. https://doi.org/10.1002/mop.31515
Zhao AP, Ren ZY, 2019b. Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications. IEEE Antenn Wirel Propag Lett, 18(1):152–156. https://doi.org/10.1109/LAWP.2018.2883428
Zhao X, Yeo SP, Ong LC, 2018. Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform. IEEE Trans Antenn Propag, 66(9):4485–4495. https://doi.org/10.1109/TAP.2018.2851381
Author information
Authors and Affiliations
Corresponding author
Additional information
Contributors
Xiao-xi ZHANG designed the research. Xiao-xi ZHANG wrote the first draft of the manuscript. Ying LIU and Ai-di REN helped organize the manuscript. Xiao-xi ZHANG and Ai-di REN revised and edited the final version.
Compliance with ethics guidelines
Xiao-xi ZHANG, Ai-di REN, and Ying LIU declare that they have no conflict of interest.
Project partially supported by the National Natural Science Foundation of China (Nos. 61871309 and 61971335)
Rights and permissions
About this article
Cite this article
Zhang, Xx., Ren, Ad. & Liu, Y. Decoupling methods of MIMO antenna arrays for 5G applications: a review. Front Inform Technol Electron Eng 21, 62–71 (2020). https://doi.org/10.1631/FITEE.1900466
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1900466