Abstract
In this study, we extend traditional (single-target) hybrid systems to multi-target hybrid systems with a focus on the multi-maneuvering-target tracking system. This system consists of a continuous state, a discrete and switchable state, and a discrete, time-constant, and unique state. By defining a new generalized labeled multi-Bernoulli density, we prove that it is closed under the Chapman-Kolmogorov prediction and Bayes update for multi-target hybrid systems. In other words, we provide the exact derivation of a solution to this system, i.e., the multi-model generalized labeled multi-Bernoulli filter, which has been developed without strict proof.
Similar content being viewed by others
References
Bar-Shalom Y, Challa S, Blom HAP, 2005. IMM estimator versus optimal estimator for hybrid systems. IEEE Trans Aerosp Electron Syst, 41(3):986–991. https://doi.org/10.1109/TAES.2005.1541443
Chang CB, Athans M, 1978. State estimation for discrete systems with switching parameters. IEEE Trans Aerosp Electron Syst, 14(3):418–425. https://doi.org/10.1109/taes.1978.308603
Dunne D, Kirubarajan T, 2013. Multiple model multi-Bernoulli filters for manoeuvering targets. IEEE Trans Aerosp Electron Syst, 49(4):2679–2692. https://doi.org/10.1109/TAES.2013.6621845
Fortmann TE, Bar-Shalom Y, Scheffe M, 1980. Multi-target tracking using joint probabilistic data association. Proc 19th IEEE Conf on Decision and Control Including the Symp on Adaptive Processes, p.807–812. https://doi.org/10.1109/CDC.1980.271915
Georgescu R, Willett P, 2012. The multiple model CPHD tracker. IEEE Trans Signal Process, 60(4): 1741–1751. https://doi.org/10.1109/TSP.2012.2183128
Hwang I, Balakrishnan H, Tomlin C, 2006. State estimation for hybrid systems: applications to aircraft tracking. IEE Proc Contr Theory Appl, 153(5):556–566. https://doi.org/10.1049/IP-CTA:20050053
Jiang M, Yi W, Hoseinnezhad R, et al., 2016. Adaptive Vo-Vo filter for maneuvering targets with time-varying dynamics. Proc 19th Int Conf on Information Fusion, p.666–672.
Li XR, Jilkov VP, 2005. Survey of maneuvering target tracking. Part V: multiple-model methods. IEEE Trans Aerosp Electron Syst, 41(4):1255–1321. https://doi.org/10.1109/TAES.2005.1561886
Mahler RPS, 2007. Statistical Multisource-Multitarget Information Fusion. Artech House, Boston, USA.
Mahler RPS, 2012. On multitarget jump-Markov filters. Proc 15th Int Conf on Information Fusion, p.149–156.
Mahler RPS, 2014. Advances in Statistical Multisource-Multitarget Information Fusion. Artech House, Boston, USA.
Papi F, Vo BN, Vo BT, et al., 2015. Generalized labeled multi-Bernoulli approximation of multi-object densities. IEEE Trans Signal Process, 63(20):5487–5497. https://doi.org/10.1109/TSP.2015.2454478
Pasha SA, Vo BN, Tuan HD, et al., 2009. A Gaussian mixture PHD filter for jump Markov system models. IEEE Trans Aerosp Electron Syst, 45(3):919–936. https://doi.org/10.1109/TAES.2009.5259174
Punchihewa Y, 2017. Efficient generalized labeled multi-Bernoulli filter for jump Markov system. Proc Int Conf on Control, Automation and Information Sciences, p.221–226. https://doi.org/10.1109/ICCAIS.2017.8217580
Punchihewa Y, Vo BT, Vo BN, 2016. A generalized labeled multi-Bernoulli filter for maneuvering targets. Proc 19th Int Conf on Information Fusion, p.980–986.
Punithakumar K, Kirubarajan T, Sinha A, 2008. Multiple-model probability hypothesis density filter for tracking maneuvering targets. IEEE Trans Aerosp Electron Syst, 44(1):87–98. https://doi.org/10.1109/TAES.2008.4516991
Reid D, 1979. An algorithm for tracking multiple targets. IEEE Trans Autom Contr, 24(6):843–854. https://doi.org/10.1109/TAC.1979.1102177
Reuter S, Vo BT, Vo BN, et al., 2014. The labeled multi-Bernoulli filter. IEEE Trans Signal Process, 62(12): 3246–3260. https://doi.org/10.1109/TSP.2014.2323064
Reuter S, Scheel A, Dietmayer K, 2015. The multiple model labeled multi-Bernoulli filter. Proc 18th Int Conf on Information Fusion, p.1574–1580.
Seah CE, Hwang I, 2009. State estimation for stochastic linear hybrid systems with continuous-state-dependent transitions: an IMM approach. IEEE Trans Aerosp Electron Syst, 45(1):376–392. https://doi.org/10.1109/TAES.2009.4805286
Sithiravel R, McDonald M, Balaji B, et al., 2016. Multiple model spline probability hypothesis density filter. IEEE Trans Aerosp Electron Syst, 52(3):1210–1226. https://doi.org/10.1109/TAES.2016.140750
Vo BN, Ma WK, 2006. The Gaussian mixture probability hypothesis density filter. IEEE Trans Signal Process, 54(11):4091–4104. https://doi.org/10.1109/TSP.2006.881190
Vo BN, Vo BT, Phung D, 2014. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans Signal Process, 62(24):6554–6567. https://doi.org/10.1109/TSP.2014.2364014
Vo BN, Vo BT, Hoang HG, 2017. An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Trans Signal Process, 65(8):1975–1987. https://doi.org/10.1109/TSP.2016.2641392
Vo BT, Vo BN, 2013. Labeled random finite sets and multi-object conjugate priors. IEEE Trans Signal Process, 61(13):3460–3475. https://doi.org/10.1109/TSP.2013.2259822
Vo BT, Vo BN, Cantoni A, 2007. Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Trans Signal Process, 55(7):3553–3567. https://doi.org/10.1109/TSP.2007.894241
Vo BT, Vo BN, Cantoni A, 2009. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans Signal Process, 57(2):409–423.
Wood TM, 2011. Interacting methods for manoeuvre handling in the GM-PHD filter. IEEE Trans Aerosp Electron Syst, 47(4):3021–3025. https://doi.org/10.1109/TAES.2011.6034685
Wu W, Sun H, Cai Y, et al., 2020. Tracking multiple maneuvering targets hidden in the DBZ based on the MM-GLMB filter. IEEE Trans Signal Process, 68:2912–2924. https://doi.org/10.1109/TSP.2020.2988635
Yang JL, Ji HB, Ge HW, 2013. Multi-model particle cardinality-balanced multi-target multi-Bernoulli algorithm for multiple manoeuvring target tracking. IET Radar Sonar Navig, 7(2):101–112. https://doi.org/10.1049/iet-rsn.2012.0184
Yi W, Jiang M, Hoseinnezhad R, 2017. The multiple model Vo-Vo filter. IEEE Trans Aerosp Electron Syst, 53(2): 1045–1054. https://doi.org/10.1109/TAES.2017.2667300
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (No. 61601510) and the Young Talent Support Project of China Association for Science and Technology (No. 18-JCJQ-QT-008)
Contributors
Weihua WU designed the research. Weihua WU, Mao ZHENG, Xun FENG, and Zewen GUAN drafted the manuscript. Yichao CAI and Hongbin JIN helped organize the manuscript. Weihua WU revised and finalized the paper.
Compliance with ethics guidelines
Weihua WU, Yichao CAI, Hongbin JIN, Mao ZHENG, Xun FENG, and Zewen GUAN declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Wu, W., Cai, Y., Jin, H. et al. Derivation of the multi-model generalized labeled multi-Bernoulli filter: a solution to multi-target hybrid systems. Front Inform Technol Electron Eng 22, 79–87 (2021). https://doi.org/10.1631/FITEE.2000105
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2000105
Key words
- Multi-maneuvering-target tracking
- Multi-model
- Generalized labeled multi-Bernoulli filter
- Multi-target hybrid systems