Abstract
In underwater scenes, the quality of the video and image acquired by the underwater imaging system suffers from severe degradation, influencing target detection and recognition. Thus, restoring real scenes from blurred videos and images is of great significance. Owing to the light absorption and scattering by suspended particles, the images acquired often have poor visibility, including color shift, low contrast, noise, and blurring issues. This paper aims to classify and compare some of the significant technologies in underwater image defogging, presenting a comprehensive picture of the current research landscape for researchers. First we analyze the reasons for degradation of underwater images and the underwater optical imaging model. Then we classify the underwater image defogging technologies into three categories, including image restoration approaches, image enhancement approaches, and deep learning approaches. Afterward, we present the objective evaluation metrics and analyze the state-of-the-art approaches. Finally, we summarize the shortcomings of the defogging approaches for underwater images and propose seven research directions.
Similar content being viewed by others

References
Abu A, Diamant R, 2019. Unsupervised local spatial mixture segmentation of underwater objects in sonar images. IEEE J Ocean Eng, 44(4):1179–1197. https://doi.org/10.1109/JOE.2018.2863961
Alex RSM, Supriya MH, 2015. Underwater image enhancement using single scale retinex on a reconfigurable hardware. Int Symp on Ocean Electronics, p.1–5. https://doi.org/10.1109/SYMPOL.2015.7581166
Amer KO, Elbouz M, Alfalou A, 2019. Enhancing underwater optical imaging by using a low-pass polarization filter. Opt Expr, 27(2):621–643. https://doi.org/10.1364/OE.27.000621
Ancuti C, Ancuti CO, Haber T, et al., 2012. Enhancing underwater images and videos by fusion. IEEE Conf on Computer Vision and Pattern Recognition, p.81–88. https://doi.org/10.1109/CVPR.2012.6247661
Ancuti CO, Ancuti C, de Vleeschouwer C, et al., 2018. Color balance and fusion for underwater image enhancement. IEEE Trans Image Process, 27(1):379–393. https://doi.org/10.1109/TIP.2017.2759252
Anwar S, Li CY, 2020. Diving deeper into underwater image enhancement: a survey. Signal Process Image Commun, 89:115978. https://doi.org/10.1016/j.image.2020.115978
Azmi KZM, Ghani ASA, Yusof ZM, et al., 2019. Naturalbased underwater image color enhancement through fusion of swarm-intelligence algorithm. Appl Soft Comput, 85:105810. https://doi.org/10.1016/j.asoc.2019.105810
Bai L, Zhang W, Pan X, et al., 2020. Underwater image enhancement based on global and local equalization of histogram and dual-image multi-scale fusion. IEEE Access, 8:128973–128990. https://doi.org/10.1109/ACCESS.2020.3009161
Buchsbaum G, 1980. A spatial processor model for object colour perception. J Franklin Inst, 310(1):1–26. https://doi.org/10.1016/0016-0032(80)90058-7
Cai BL, Xu XM, Jia K, et al., 2016. DehazeNet: an end-to-end system for single image haze removal. IEEE Trans Image Process, 25(11):5187–5198. https://doi.org/10.1109/TIP.2016.2598681
Cai WW, Wei ZG, 2020. PiiGAN: generative adversarial networks for pluralistic image inpainting. IEEE Access, 8:48451–48463. https://doi.org/10.1109/ACCESS.2020.2979348
Carlevaris-Bianco N, Mohan A, Eustice RM, 2010. Initial results in underwater single image dehazing. OCEANS 2010 MTS/IEEE SEATTLE, p.1–8. https://doi.org/10.1109/OCEANS.2010.5664428
Chang YK, Jung CL, Ke P, et al., 2018. Automatic contrast-limited adaptive histogram equalization with dual Gamma correction. IEEE Access, 6:11782–11792. https://doi.org/10.1109/ACCESS.2018.2797872
Chao L, Wang M, 2010. Removal of water scattering. Proc 2nd Int Conf on Computer Engineering and Technology, p.35–39. https://doi.org/10.1109/ICCET.2010.5485339
Chen XY, Yu JZ, Kong SH, et al., 2019. Towards real-time advancement of underwater visual quality with GAN. IEEE Trans Ind Electron, 66(12):9350–9359. https://doi.org/10.1109/TIE.2019.2893840
Chiang JY, Chen YC, 2012. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans Image Process, 21(4):1756–1769. https://doi.org/10.1109/TIP.2011.2179666
Dai CG, Lin MX, Wu XJ, et al., 2020. Single underwater image restoration by decomposing curves of attenuating color. Opt Laser Technol, 123:105947. https://doi.org/10.1016/j.optlastec.2019.105947
Demirel H, Anbarjafari G, 2011. IMAGE resolution enhancement by using discrete and stationary wavelet decomposition. IEEE Trans Image Process, 20(5):1458–1460. https://doi.org/10.1109/TIP.2010.2087767
Deng G, 2011. A generalized unsharp masking algorithm. IEEE Trans Image Process, 20(5):1249–1261. https://doi.org/10.1109/TIP.2010.2092441
Deng XY, Wang HG, Liu X, 2019. Underwater image enhancement based on removing light source color and dehazing. IEEE Access, 7:114297–114309. https://doi.org/10.1109/ACCESS.2019.2936029
Ding XY, Wang YF, Zhang J, et al., 2017. Underwater image dehaze using scene depth estimation with adaptive color correction. OCEANS Aberdeen, p.1–5. https://doi.org/10.1109/OCEANSE.2017.8084665
Drews PJr, Do Nascimento E, Moraes F, et al., 2013. Transmission estimation in underwater single images. Proc IEEE Int Conf on Computer Vision Workshops, p.825–830. https://doi.org/10.1109/ICCVW.2013.113
Duntley SQ, 1963. Light in the sea. J Opt Soc Am, 53(2): 214–233. https://doi.org/10.1364/JOSA.53.000214
Fabbri C, Islam MJ, Sattar J, 2018. Enhancing underwater imagery using generative adversarial networks. IEEE Int Conf on Robotics and Automation, p.7159–7165. https://doi.org/10.1109/ICRA.2018.8460552
Finlayson GD, Trezzi E, 2004. Shades of gray and colour constancy. Proc 12th Color Imaging Conf, p.37–41.
Fu XY, Zhuang PX, Huang Y, et al., 2014. A retinex-based enhancing approach for single underwater image. IEEE Int Conf on Image Processing, p.4572–4576. https://doi.org/10.1109/ICIP.2014.7025927
Fu XY, Liao YH, Zeng DL, et al., 2015. A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans Image Process, 24(12):4965–4977. https://doi.org/10.1109/TIP.2015.2474701
Galdran A, Pardo D, Picón A, et al., 2015. Automatic redchannel underwater image restoration. J Vis Commun Image Represent, 26:132–145. https://doi.org/10.1016/j.jvcir.2014.11.006
Gao SB, Zhang M, Zhao Q, et al., 2019. Underwater image enhancement using adaptive retinal mechanisms. IEEE Trans Image Process, 28(11):5580–5595. https://doi.org/10.1109/TIP.2019.2919947
Ghani ASA, Isa NAM, 2014. Underwater image quality enhancement through composition of dual-intensity images and Rayleigh-stretching. SpringerPlus, 3(1):757. https://doi.org/10.1186/2193-1801-3-757
Ghani ASA, Isa NAM, 2015a. Underwater image quality enhancement through integrated color model with Rayleigh distribution. Appl Soft Comput, 27:219–230. https://doi.org/10.1016/j.asoc.2014.11.020
Ghani ASA, Isa NAM, 2015b. Enhancement of low quality underwater image through integrated global and local contrast correction. Appl Soft Comput, 37:332–344. https://doi.org/10.1016/j.asoc.2015.08.033
Ghani ASA, Isa NAM, 2017. Automatic system for improving underwater image contrast and color through recursive adaptive histogram modification. Comput Electron Agric, 141:181–195. https://doi.org/10.1016/j.compag.2017.07.021
Ghani ASA, Aris RSNAR, Zain MLM, 2016. Unsupervised contrast correction for underwater image quality enhancement through integrated-intensity stretched-Rayleigh histograms. J Telecomm Electron Comput Eng, 8(3):1–7.
Giakos GC, 2004. Active backscattered optical polarimetric imaging of scattered targets. Proc 21st IEEE Instrumentation and Measurement Technology Conf, p.430–432. https://doi.org/10.1109/IMTC.2004.1351080
Gijsenij A, Gevers T, van de Weijer J, 2012. Improving color constancy by photometric edge weighting. IEEE Trans Patt Anal Mach Intell, 34(5):918–929. https://doi.org/10.1109/TPAMI.2011.197
Guo YC, Li HY, Zhuang PX, 2020. Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J Ocean Eng, 45(3):862–870. https://doi.org/10.1109/JOE.2019.2911447
Han M, Lyu ZY, Qiu T, et al., 2020. A review on intelligence dehazing and color restoration for underwater images. IEEE Trans Syst Man Cybern Syst, 50(5): 1820–1832. https://doi.org/10.1109/TSMC.2017.2788902
Han PL, Liu F, Zhang G, et al., 2018. Multi-scale analysis method of underwater polarization imaging. Acta Phys Sin, 67(5):054202 (in Chinese). https://doi.org/10.7498/aps.67.20172009
Hautière N, Tarel JP, Aubert D, et al., 2008. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereol, 27(2):87–95. https://doi.org/10.5566/ias.v27.p87-95
He KM, Sun J, Tang XO, 2009. Single image haze removal using dark channel prior. Proc IEEE Computer Society Conf on Computer Vision and Pattern Recognition, p.1956–1963. https://doi.org/10.1109/CVPR.2009.5206515
He N, Wang JB, Zhang LL, et al., 2015. An improved fractional-order differentiation model for image denoising. Signal Process, 112:180–188. https://doi.org/10.1016/j.sigpro.2014.08.025
Hou GJ, Pan ZK, Wang GD, et al., 2019. An efficient nonlocal variational method with application to underwater image restoration. Neurocomputing, 369:106–121. https://doi.org/10.1016/j.neucom.2019.08.041
Hu HF, Zhao L, Huang BJ, et al., 2017. Enhancing visibility of polarimetric underwater image by transmittance correction. IEEE Photon J, 9(3):6802310. https://doi.org/10.1109/JPHOT.2017.2698000
Hu HF, Zhao L, Li XB, et al., 2018. Underwater image recovery under the nonuniform optical field based on polarimetric imaging. IEEE Photon J, 10(1):6900309. https://doi.org/10.1109/JPHOT.2018.2791517
Huang BJ, Liu TG, Hu HF, et al., 2016. Underwater image recovery considering polarization effects of objects. Opt Expr, 24(9):9826–9838. https://doi.org/10.1364/OE.24.009826
Huang DM, Wang Y, Song W, et al., 2018. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition. Proc 24th Int Conf on Multimedia Modeling, p.453–465. https://doi.org/10.1007/978-3-319-73603-7_37
Hummel R, 1977. Image enhancement by histogram transformation. Comput Graph Image Process, 6(2):184–195. https://doi.org/10.1016/S0146-664X(77)80011-7
Iqbal K, Salam RA, Osman A, et al., 2007. Underwater image enhancement using an integrated colour model. IAENG Int J Comput Sci, 34:2.
Iqbal K, Odetayo M, James A, et al., 2010. Enhancing the low quality images using unsupervised colour correction method. IEEE Int Conf on Systems, Man and Cybernetics, p.1703–1709. https://doi.org/10.1109/ICSMC.2010.5642311
Jaffe JS, 1990. Computer modeling and the design of optimal underwater imaging systems. IEEE J Ocean Eng, 15(2): 101–111. https://doi.org/10.1109/48.50695
Joshi KR, Kamathe RS, 2008. Quantification of retinex in enhancement of weather degraded images. Int Conf on Audio, Language and Image Processing, p.1229–1233. https://doi.org/10.1109/ICALIP.2008.4590120
Kapoor R, Gupta R, Son LH, et al., 2019. Fog removal in images using improved dark channel prior and contrast limited adaptive histogram equalization. Multim Tools Appl, 78(16):23281–23307. https://doi.org/10.1007/s11042-019-7574-8
Kim T, Cha M, Kim H, et al., 2017. Learning to discover cross-domain relations with generative adversarial networks. Proc 34th Int Conf on Machine Learning, p.1857–1865.
Kim TK, Paik JK, Kang BS, 1998. Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering. IEEE Trans Consum Electron, 44(1):82–87. https://doi.org/10.1109/30.663733
Kim YT, 1997. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron, 43(1):1–8. https://doi.org/10.1109/30.580378
Land EH, 1977. The retinex theory of color vision. Sci Am, 237(6):108–128. https://doi.org/10.1038/scientificamerican1277-108
Lee Y, Gibson KB, Lee Z, et al., 2014. Stereo image defogging. Proc IEEE Int Conf on Image Processing, p.5427–5431. https://doi.org/10.1109/ICIP.2014.7026098
Li CY, Guo JC, Cong RM, et al., 2016. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans Image Process, 25(12):5664–5677. https://doi.org/10.1109/TIP.2016.2612882
Li CY, Guo JC, Guo CL, et al., 2017. A hybrid method for underwater image correction. Patt Recogn Lett, 94:62–67. https://doi.org/10.1016/j.patrec.2017.05.023
Li CY, Guo JC, Guo CL, 2018. Emerging from water: underwater image color correction based on weakly supervised color transfer. IEEE Signal Process Lett, 25(3):323–327. https://doi.org/10.1109/LSP.2018.2792050
Li CY, Guo CL, Ren WQ, et al., 2019. An underwater image enhancement benchmark dataset and beyond. IEEE Trans Image Process, 29:4376–4389. https://doi.org/10.1109/TIP.2019.2955241
Li CY, Anwar S, Porikli F, 2020. Underwater scene prior inspired deep underwater image and video enhancement. Patt Recogn, 98:107038. https://doi.org/10.1016/j.patcog.2019.107038
Li J, Skinner KA, Eustice RM, et al., 2018. WaterGAN: un-supervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot Autom Lett, 3(1):387–394. https://doi.org/10.1109/LRA.2017.2730363
Li YJ, Lu HM, Li KC, et al., 2018. Non-uniform de-scattering and de-blurring of underwater images. Mob Netw Appl, 23(2):352–362. https://doi.org/10.1007/s11036-017-0933-7
Liu F, Wei Y, Han PL, et al., 2019. Polarization-based exploration for clear underwater vision in natural illumination. Opt Expr, 27(3):3629–3641. https://doi.org/10.1364/OE.27.003629
Liu P, Wang GY, Qi H, et al., 2019. Underwater image enhancement with a deep residual framework. IEEE Access, 7:94614–94629. https://doi.org/10.1109/ACCESS.2019.2928976
Liu TG, Guan ZJ, Li XB, et al., 2020. Polarimetric underwater image recovery for color image with crosstalk compensation. Opt Lasers Eng, 124:105833. https://doi.org/10.1016/j.optlaseng.2019.105833
Mangeruga M, Cozza M, Bruno F, 2018. Evaluation of underwater image enhancement algorithms under different environmental conditions. J Mar Sci Eng, 6(1):10. https://doi.org/10.3390/jmse6010010
Marques TP, Albu AB, Hoeberechts M, 2019. A contrastguided approach for the enhancement of low-lighting underwater images. J Imag, 5(10):79. https://doi.org/10.3390/jimaging5100079
McGlamery BL, 1980. A computer model for underwater camera systems. Proc SPIE, Ocean Optics VI, 0208:221–231. https://doi.org/10.1117/12.958279
Nomura K, Sugimura D, Hamamoto T, 2018. Underwater image color correction using exposure-bracketing imaging. IEEE Signal Process Lett, 25(6):893–897. https://doi.org/10.1109/LSP.2018.2831630
Pan PW, Yuan F, Cheng E, 2018. Underwater image de-scattering and enhancing using DehazeNet and HWD. J Mar Sci Technol, 26(4):531–540. https://doi.org/10.6119/JMST.201808_26(4).0006
Pan PW, Yuan F, Cheng E, 2019. De-scattering and edge-enhancement algorithms for underwater image restoration. Front Inform Technol Electron Eng, 20(6):862–871. https://doi.org/10.1631/FITEE.1700744
Panetta K, Gao C, Agaian S, 2016. Human-visual-system-inspired underwater image quality measures. IEEE J Ocean Eng, 41(3):541–551. https://doi.org/10.1109/JOE.2015.2469915
Peng YT, Cosman PC, 2017. Underwater image restoration based on image blurriness and light absorption. IEEE Trans Image Process, 26(4):1579–1594. https://doi.org/10.1109/TIP.2017.2663846
Peng YT, Zhao XY, Cosman PC, 2015. Single underwater image enhancement using depth estimation based on blurriness. IEEE Int Conf on Image Processing, p.4952–4956. https://doi.org/10.1109/ICIP.2015.7351749
Peng YT, Cao KM, Cosman PC, 2018. Generalization of the dark channel prior for single image restoration. IEEE Trans Image Process, 27(6):2856–2868. https://doi.org/10.1109/TIP.2018.2813092
Perez J, Attanasio AC, Nechyporenko N, et al., 2017. A deep learning approach for underwater image enhancement. Int Work-Conf on the Interplay Between Natural and Artificial Computation, p.183–192. https://doi.org/10.1007/978-3-319-59773-7_19
Pizer SM, Amburn EP, Austin JD, et al., 1987. Adaptive histogram equalization and its variations. Comput Vis Graph Image Process, 39(3):355–368. https://doi.org/10.1016/S0734-189X(87)80186-X
Raihan AJ, Abas PE, de Silva LC, 2019. Review of underwater image restoration algorithms. IET Image Process, 13(10): 1587–1596. https://doi.org/10.1049/iet-ipr.2019.0117
Ren WQ, Liu SF, Ma L, et al., 2019. Low-light image enhancement via a deep hybrid network. IEEE Trans Image Process, 28(9):4364–4375. https://doi.org/10.1109/TIP.2019.2910412
Ren WQ, Pan JS, Zhang H, et al., 2020. Single image dehazing via multi-scale convolutional neural networks with holistic edges. Int J Comput Vis, 128(1):240–259. https://doi.org/10.1007/s11263-019-01235-8
Reza AM, 2004. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI Signal Process Syst Signal Image Video Technol, 38(1):35–44. https://doi.org/10.1023/B:VLSI.0000028532.53893.82
Roser M, Dunbabin M, Geiger A, 2014. Simultaneous underwater visibility assessment, enhancement and improved stereo. IEEE Int Conf on Robotics and Automation, p.3840–3847. https://doi.org/10.1109/ICRA.2014.6907416
Schechner YY, Averbuch Y, 2007. Regularized image recovery in scattering media. IEEE Trans Patt Anal Mach Intell, 29(9):1655–1660. https://doi.org/10.1109/TPAMI.2007.1141
Schechner YY, Karpel N, 2005. Recovery of underwater visibility and structure by polarization analysis. IEEE J Ocean Eng, 30(3):570–587. https://doi.org/10.1109/JOE.2005.850871
Schechner YY, Narasimhan SG, Nayar SK, 2001. Instant dehazing of images using polarization. Proc IEEE Computer Society Conf on Computer Vision and Pattern Recognition, p.325–332. https://doi.org/10.1109/CVPR.2001.990493
Schechner YY, Narasimhan SG, Nayar SK, 2003. Polarization-based vision through haze. Appl Opt, 42(3):511–525. https://doi.org/10.1364/AO.42.000511
Singh D, Kumar V, 2019. A comprehensive review of computational dehazing techniques. Arch Comput Methods Eng, 26(5):1395–1413. https://doi.org/10.1007/s11831-018-9294-z
Song W, Wang Y, Huang DM, et al., 2018. A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration. Proc 19th Pacific-Rim Conf on Multimedia on Advances in Multimedia Information Processing, p.678–688. https://doi.org/10.1007/978-3-030-00776-8_62
Tang C, von Lukas UF, Vahl M, et al., 2019. Efficient underwater image and video enhancement based on retinex. Signal Image Video Process, 13(5):1011–1018. https://doi.org/10.1007/s11760-019-01439-y
Tang JR, Isa NAM, 2017. Bi-histogram equalization using modified histogram bins. Appl Soft Comput, 55:31–43. https://doi.org/10.1016/j.asoc.2017.01.053
Tian Y, Liu B, Su XY, et al., 2019. Underwater imaging based on LF and polarization. IEEE Photon J, 11(1):6500309. https://doi.org/10.1109/JPHOT.2018.2890286
Torres-Méndez LA, Dudek G. 2005. Color correction of underwater images for aquatic robot inspection. Proc 5th Int Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, p.60–73. https://doi.org/10.1007/11585978_5
Treibitz T, Schechner YY, 2006. Instant 3Descatter. Proc IEEE Computer Society Conf on Computer Vision and Pattern Recognition, p.1861–1868. https://doi.org/10.1109/CVPR.2006.155
Treibitz T, Schechner YY, 2009. Active polarization descattering. IEEE Trans Patt Anal Mach Intell, 31(3):385–399. https://doi.org/10.1109/TPAMI.2008.85
Treibitz T, Schechner YY, 2012. Turbid scene enhancement using multi-directional illumination fusion. IEEE Trans Image Process, 21(11):4662–4667. https://doi.org/10.1109/TIP.2012.2208978
van de Weijer J, Gevers T, Gijsenij A, 2007. Edge-based color constancy. IEEE Trans Image Process, 16(9):2207–2214. https://doi.org/10.1109/TIP.2007.901808
Wang KY, Hu Y, Chen J, et al., 2019. Underwater image restoration based on a parallel convolutional neural network. Remote Sens, 11(13):1591. https://doi.org/10.3390/rs11131591
Wang SQ, Ma KD, Yeganeh H, et al., 2015. A patch-structure representation method for quality assessment of contrast changed images. IEEE Signal Process Lett, 22(12):2387–2390. https://doi.org/10.1109/LSP.2015.2487369
Wang Y, Zhang J, Cao Y, et al., 2017. A deep CNN method for underwater image enhancement. IEEE Int Conf on Image Processing, p.1382–1386. https://doi.org/10.1109/ICIP.2017.8296508
Wang Y, Song W, Fortino G, et al., 2019. An experimentalbased review of image enhancement and image restoration methods for underwater imaging. IEEE Access, 7:140233–140251. https://doi.org/10.1109/ACCESS.2019.2932130
Wang YF, Wang HY, Yin CL, et al., 2016. Biologically inspired image enhancement based on retinex. Neurocomputing, 177:373–384. https://doi.org/10.1016/j.neucom.2015.10.124
Wang Z, Bovik AC, 2006. Modern Image Quality Assessment: Synthesis Lectures on Image, Video, and Multimedia Processing. Morgan & Claypool, San Rafael, Argentina, p.1–156. https://doi.org/10.2200/S00010ED1V01Y200508IVM003
Wen HC, Tian YH, Huang TJ, et al., 2013. Single underwater image enhancement with a new optical model. IEEE Int Symp on Circuits and Systems, p.753–756. https://doi.org/10.1109/ISCAS.2013.6571956
Weng CC, Chen H, Fuh CS, 2005. A novel automatic white balance method for digital still cameras. IEEE Int Symp on Circuits and Systems, p.3801–3804. https://doi.org/10.1109/ISCAS.2005.1465458
Wu HD, Zhao M, Li FQ, et al., 2020. Underwater polarization-based single pixel imaging. J Soc Inform Display, 28(2): 157–163. https://doi.org/10.1002/jsid.838
Xie K, Pan W, Xu S, 2018. An underwater image enhancement algorithm for environment recognition and robot navigation. Robotics, 7(1):14. https://doi.org/10.3390/robotics7010014
Xu Q, Guo ZY, Tao QQ, et al., 2015. Transmitting characteristics of polarization information under seawater. Appl Opt, 54(21):6584–6588. https://doi.org/10.1364/AO.54.006584
Yang HY, Chen PY, Huang CC, et al., 2011. Low complexity underwater image enhancement based on dark channel prior. 2nd Int Conf on Innovations in Bio-inspired Computing and Applications, p.17–20. https://doi.org/10.1109/IBICA.2011.9
Yang M, Sowmya A, 2015. An underwater color image quality evaluation metric. IEEE Trans Image Process, 24(12): 6062–6071. https://doi.org/10.1109/TIP.2015.2491020
Yang M, Hu JT, Li CY, et al., 2019. An in-depth survey of underwater image enhancement and restoration. IEEE Access, 7:123638–123657. https://doi.org/10.1109/ACCESS.2019.2932611
Yemelyanov KM, Lin SS, Pugh EN, et al., 2006. Adaptive algorithms for two-channel polarization sensing under various polarization statistics with nonuniform distributions. Appl Opt, 45(22):5504–5520. https://doi.org/10.1364/AO.45.005504
Yin GJ, Liu B, Sheng L, et al., 2019. Semantics disentangling for text-to-image generation. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.2327–2336. https://doi.org/10.1109/CVPR.2019.00243
You HF, Tian SW, Yu L, et al., 2020. Pixel-level remote sensing image recognition based on bidirectional word vectors. IEEE Trans Geosci Remote Sens, 58(2):1281–1293. https://doi.org/10.1109/TGRS.2019.2945591
Yuan MK, Peng YX, 2018. Text-to-image synthesis via symmetrical distillation networks. Proc 26th ACM Int Conf on Multimedia, p.1407–1415. https://doi.org/10.1145/3240508.3240559
Yuan MK, Peng YX, 2020. Bridge-GAN: interpretable representation learning for text-to-image synthesis. IEEE Trans Circ Syst Video Technol, 30(11):4258–4268. https://doi.org/10.1109/TCSVT.2019.2953753
Zhang S, Wang T, Dong JY, et al., 2017. Underwater image enhancement via extended multi-scale retinex. Neurocomputing, 245:1–9. https://doi.org/10.1016/j.neucom.2017.03.029
Zhang WD, Dong LL, Pan XP, et al., 2019a. Single image defogging based on multi-channel convolutional MSRCR. IEEE Access, 7:72492–72504. https://doi.org/10.1109/ACCESS.2019.2920403
Zhang WD, Dong LL, Pan XP, et al., 2019b. A survey of restoration and enhancement for underwater images. IEEE Access, 7:182259–182279. https://doi.org/10.1109/ACCESS.2019.2959560
Zhao MH, Hu CQ, Wei FL, et al., 2019. Real-time underwater image recognition with FPGA embedded system for convolutional neural network. Sensors, 19(2):350. https://doi.org/10.3390/s19020350
Zhao XW, Jin T, Qu S, 2015. Deriving inherent optical properties from background color and underwater image enhancement. Ocean Eng, 94:163–172. https://doi.org/10.1016/j.oceaneng.2014.11.036
Zhou JC, Hao ML, Zhang DH, et al., 2019a. Fusion PSPnet image segmentation based method for multi-focus image fusion. IEEE Photon J, 11(6):6501412. https://doi.org/10.1109/JPHOT.2019.2950949
Zhou JC, Zhang DG, Zou PY, et al., 2019b. Retinex-based laplacian pyramid method for image defogging. IEEE Access, 7:122459–122472. https://doi.org/10.1109/ACCESS.2019.2934981
Zhu JY, Park T, Isola P, et al., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. Proc IEEE Int Conf on Computer Vision, p.2223–2232. https://doi.org/10.1109/ICCV.2017.244
Author information
Authors and Affiliations
Contributions
Jing-chun ZHOU conceived the idea and drafted the paper. De-huan ZHANG carried out the experiments. Wei-shi ZHANG revised the paper and provided technical guidance. Jing-chun ZHOU and De-huan ZHANG revised and finalized the paper.
Corresponding author
Additional information
Compliance with ethics guidelines
Jing-chun ZHOU, De-huan ZHANG, and Wei-shi ZHANG declare that they have no conflict of interest.
Project supported by the National Natural Science Foundation of China (No. 61702074), the Liaoning Provincial Natural Science Foundation of China (No. 20170520196), and the Fundamental Research Funds for the Central Universities, China (Nos. 3132019205 and 3132019354)
Rights and permissions
About this article
Cite this article
Zhou, Jc., Zhang, Dh. & Zhang, Ws. Classical and state-of-the-art approaches for underwater image defogging: a comprehensive survey. Front Inform Technol Electron Eng 21, 1745–1769 (2020). https://doi.org/10.1631/FITEE.2000190
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2000190