Abstract
Optimal transportation plays a fundamental role in many fields in engineering and medicine, including surface parameterization in graphics, registration in computer vision, and generative models in deep learning. For quadratic distance cost, optimal transportation map is the gradient of the Brenier potential, which can be obtained by solving the Monge-Ampère equation. Furthermore, it is induced to a geometric convex optimization problem. The Monge-Ampère equation is highly non-linear, and during the solving process, the intermediate solutions have to be strictly convex. Specifically, the accuracy of the discrete solution heavily depends on the sampling pattern of the target measure. In this work, we propose a self-adaptive sampling algorithm which greatly reduces the sampling bias and improves the accuracy and robustness of the discrete solutions. Experimental results demonstrate the efficiency and efficacy of our method.
摘要
最优传输在工程、 医疗等各领域扮演着重要角色, 包括图形学中的曲面参数化、计算机视觉中的注册、 深度学习中的生成模型等. 对于平方距离传输成本, 最优传输映射是Brenier势的梯度, 可通过求解Monge-Ampère方程得到. 此外, 最优传输映射可归结为几何凸优化问题. Monge-Ampère方程高度非线性, 在求解过程中, 中间解需要始终保持严格凸. 特别地, 离散解的精确性严重依赖于目标测度的采样. 因此, 提出一种自适应采样算法, 极大减少采样偏差, 同时提高离散解的精确性和鲁棒性. 实验结果验证了所提算法的有效性和高效性.
Similar content being viewed by others
References
Alauzet F, Loseille A, Dervieux A, et al., 2006. Multi-dimensional continuous metric for mesh adaptation. Proc 15th Int Meshing Roundtable, p.191–214. https://doi.org/10.1007/978-3-540-34958-7_12
Apel T, Lube G, 1996. Anisotropic mesh refinement in stabilized Galerkin methods. Num Math, 74(3):261–282. https://doi.org/10.1007/s002110050216
Apel T, Grosman S, Jimack PK, et al., 2004. A new methodology for anisotropic mesh refinement based upon error gradients. Appl Num Math, 50(3–4):329–341. https://doi.org/10.1016/j.apnum.2004.01.006
Arjovsky M, Chintala S, Bottou L, 2017. Wasserstein generative adversarial networks. Proc 34th Int Conf on Machine Learning, p.214–223.
Berndt M, Shashkov MJ, 2003. Multilevel accelerated optimization for problems in grid generation. Proc 12th Int Meshing Roundtable, p.351–359.
Bossen FJ, Heckbert PS, 1996. A pliant method for anisotropic mesh generation. Proc 5th Int Meshing Roundtable, p.115–126.
Bottasso CL, 2004. Anisotropic mesh adaption by metric-driven optimization. Int J Num Methods Eng, 60(3):597–639. https://doi.org/10.1002/nme.977
Brandts J, Korotov S, Křížek M, 2008. On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comp Math Appl, 55(10):2227–2233. https://doi.org/10.1016/j.camwa.2007.11.010
Brenier Y, 1991. Polar factorization and monotone rearrangement of vector-valued functions. Comm Pure Appl Math, 44(4):375–417. https://doi.org/10.1002/cpa.3160440402
Chen L, Xu JC, 2004. Optimal Delaunay triangulations. J Comp Math, 22(2):299–308.
Cheng SW, Dey TK, Ramos EA, et al., 2007. Sampling and meshing a surface with guaranteed topology and geometry. SIAM J Comp, 37(4):1199–1227. https://doi.org/10.1137/060665889
Cheng SW, Dey TK, Shewchuk JR, 2012. Delaunay Mesh Generation. CRC Press, Boca Raton, USA.
Chew LP, 1989. Guaranteed-Quality Triangular Meshes. Technical Report TR 89-983. Computer Science Department, Cornell University, USA.
Chew LP, 1993. Guaranteed-quality mesh generation for curved surfaces. Proc 9th Annual Symp on Computational Geometry, p.274–280. https://doi.org/10.1145/160985.161150
Cui L, Qi X, Wen CF, et al., 2019. Spherical optimal transportation. Comp Aided Des, 115:181–193. https://doi.org/10.1016/j.cad.2019.05.024
Cuturi M, 2013. Sinkhorn distances: lightspeed computation of optimal transportation distances. https://arxiv.org/abs/1306.0895
de Goes F, Cohen-Steiner D, Alliez P, et al., 2011. An optimal transport approach to robust reconstruction and simplification of 2D shapes. Comp Graph Forum, 30(5):1593–1602. https://doi.org/10.1111/j.1467-8659.2011.02033.x
de Goes F, Breeden K, Ostromoukhov V, et al., 2012. Blue noise through optimal transport. ACM Trans Graph, 31(6):171. https://doi.org/10.1145/2366145.2366190
Dey TK, 2007. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Cambridge University Press, NY, UK.
Dey TK, Levine JA, 2007. Delaunay meshing of isosurfaces. Proc Shape Modeling Int, p.241–250. https://doi.org/10.1007/s00371-008-0224-1
Dey TK, Ray T, 2010. Polygonal surface remeshing with Delaunay refinement. Eng Comp, 26(3):289–301. https://doi.org/10.1007/s00366-009-0162-1
Dobrzynski C, Frey P, 2008. Anisotropic Delaunay mesh adaptation for unsteady simulations. Proc 17th Int Meshing Roundtable, p.177–194. https://doi.org/10.1007/978-3-540-87921-3_11
Dominitz A, Tannenbaum A, 2010. Texture mapping via optimal mass transport. IEEE Trans Vis Comput Graph, 16(3):419–433. https://doi.org/10.1109/TVCG.2009.64
Du Q, Wang DS, 2005. Anisotropic centroidal Voronoi tessellations and their applications. SIAM J Sci Comput, 26(3):737–761. https://doi.org/10.1137/S1064827503428527
Edelsbrunner H, 2001. Geometry and Topology for Mesh Generation. Cambridge University Press, Cambridge, England, UK.
Gu XF, Luo F, Sun J, et al., 2016. Variational principles for Minkowski type problems, discrete optimal transport, and discrete Monge-Ampère equations. Asian J Math, 20(2):383–398. https://doi.org/10.4310/AJM.2016.v20.n2.a7
Gu XF, Luo F, Sun J, et al., 2018. A discrete uniformization theorem for polyhedral surfaces. J Diff Geom, 109(2):223–256. https://doi.org/10.4310/jdg/1527040872
Guan P, Wang XJ, et al., 1998. On a Monge-Ampère equation arising in geometric optics. J Diff Geom, 48(2):205–223. https://doi.org/10.4310/jdg/1214460795
Gulrajani I, Ahmed F, Arjovsky M, et al., 2017. Improved training of Wasserstein GANs. Proc 31st Int Conf on Neural Information Processing Systems, p.5769–5779.
Gutiérrez CE, Huang Q, 2009. The refractor problem in reshaping light beams. Archive Ration Mech Anal, 193(2):423–443. https://doi.org/10.1007/s00205-008-0165-x
Huang WZ, 2006. Mathematical principles of anisotropic mesh adaptation. Commun Comput Phys, 1(2):276–310.
Kantorovich LV, 2006. On a problem of Monge. J Math Sci, 133(4):1383. https://doi.org/10.1007/s10958-006-0050-9
Kitagawa J, Mèrigot Q, Thibert B, 2019. Convergence of a Newton algorithm for semi-discrete optimal transport. J Eur Math Soc, 21(9):2603–2651. https://doi.org/10.4171/JEMS/889
Kunert G, 2002. Toward anisotropic mesh construction and error estimation in the finite element method. Num Meth Partial Diff Equ, 18(5):625–648. https://doi.org/10.1002/num.10023
Lei N, Su KH, Cui L, et al., 2019. A geometric view of optimal transportation and generative mode. Comp Aided Geomet Des, 68:1–21. https://doi.org/10.1016/j.cagd.2018.10.005
Liu Y, Wang WP, Lévy B, et al., 2009. On centroidal Voronoi tessellation-energy smoothness and fast computation. ACM Trans Graph, 28(4):1–17. https://doi.org/10.1145/1559755.1559758
Löhner R, Cebral J, 2000. Generation of non-isotropic unstructured grids via directional enrichment. Int J Numl Meth Eng, 49(1–2):219–232.
Mérigot Q, 2011. A multiscale approach to optimal transport. Comp Graph Forum, 30(5):1583–1592. https://doi.org/10.1111/j.1467-8659.2011.02032.x
Meyron J, Mérigot Q, Thibert B, 2018. Light in power: a general and parameter-free algorithm for caustic design. ACM Trans Graph, 37(6):224. https://doi.org/10.1145/3272127.3275056
Nadeem S, Su ZY, Zeng W, et al., 2017. Spherical parameterization balancing angle and area distortions. IEEE Trans Vis Comput Graph, 23(6):1663–1676. https://doi.org/10.1109/TVCG.2016.2542073
Rong G, Liu Y, Wang W, et al., 2011. GPU-assisted computation of centroidal Voronoi tessellation. IEEE Trans Vis Comp Graph, 17(3):345–356. https://doi.org/10.1109/TVCG.2010.53
Ruppert J, 1995. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J Algorithms, 18(3):548–585. https://doi.org/10.1006/jagm.1995.1021
Shewchuk JR, 2002. Delaunay refinement algorithms for triangular mesh generation. Comput Geom, 22(1–3):21–74. https://doi.org/10.1016/S0925-7721(01)00047-5
Sirois, Y, Dompierre J, Vallet MG, et al., 2006. Mesh smoothing based on Riemannian metric non-conformity minimization. Proc 15th Int Meshing Roundtable, p.271–288. https://doi.org/10.1007/978-3-540-34958-7_16
Solomon J, Rustamov R, Guibas L, et al., 2014. Earth mover’s distances on discrete surfaces. ACM Trans Graph, 33(4):67. https://doi.org/10.1145/2601097.2601175
Solomon J, de Goes F, Peyré G, et al., 2015. Convolutional Wasserstein distances: efficient optimal transportation on geometric domains. ACM Trans Graph, 34(4):66. https://doi.org/10.1145/2766963
Su KH, Cui L, Qian K, et al., 2016. Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation. Comp Aided Geom Des, 46:76–91. https://doi.org/10.1016/j.cagd.2016.05.005
Su KH, Chen W, Lei N, et al., 2017. Volume preserving mesh parameterization based on optimal mass transportation. Comp Aided Des, 82:42–56. https://doi.org/10.1016/j.cad.2016.05.020
Su ZY, Zeng W, Shi R, et al., 2013. Area preserving brain mapping. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.2235–2242. https://doi.org/10.1109/CVPR.2013.290
Su ZY, Wang YL, Shi R, et al., 2015. Optimal mass transport for shape matching and comparison. IEEE Trans Patt Anal Mach Intell, 37(11):2246–2259. https://doi.org/10.1109/TPAMI.2015.2408346
ur Rehman T, Haber E, Pryor G, et al., 2009. 3D nonrigid registration via optimal mass transport on the GPU. Med Image Anal, 13(6):931–940. https://doi.org/10.1016/j.media.2008.10.008
Villani C, 2008. Optimal Transport: Old and New. Springer Science & Business Media, Berlin, Germany.
Wang XJ, 1996. On the design of a reflector antenna. Inverse Probl, 12(3):351. https://doi.org/10.1088/0266-5611/12/3/013
Wang XJ, 2004. On the design of a reflector antenna II. Calc Var Part Diff Equ, 20(3):329–341. https://doi.org/10.1007/s00526-003-0239-4
Yan DM, Wang K, Levy B, et al., 2011. Computing 2D periodic centroidal Voronoi tessellation. 8th Int Symp on Voronoi Diagrams in Science and Engineering, p.177–184. https://doi.org/10.1109/ISVD.2011.31
Yau ST, 1998. S.S. Chern: a Great Geometer of the Twentieth Century. International Press of Boston, p.366.
Zhao X, Su ZY, Gu XD, et al., 2013. Area-preservation mapping using optimal mass transport. IEEE Trans Vis Comp Graph, 19(12):2838–2847. https://doi.org/10.1109/TVCG.2013.135
Author information
Authors and Affiliations
Contributions
Yingshi WANG, Na LEI, and Xianfeng GU offered the insights and proposed the algorithms. Xiaopeng ZHENG, Wei CHEN, Xin QI, and Yuxue REN implemented the algorithms and visualized the data. All the authors have collaboratively organized the materials, conducted the experiments, drafted the manuscript, and revised and finalized the paper.
Corresponding author
Ethics declarations
Yingshi WANG, Xiaopeng ZHENG, Wei CHEN, Xin QI, Yuxue REN, Na LEI, and Xianfeng GU declare that they have no conflict of interest.
Additional information
Project supported by the National Numerical Wind Tunnel Project, China (No. NNW2019ZT5-B13) and the National Natural Science Foundation of China (Nos. 61907005, 61772105, 61936002, and 61720106005)
Rights and permissions
About this article
Cite this article
Wang, Y., Zheng, X., Chen, W. et al. Robust and accurate optimal transportation map by self-adaptive sampling. Front Inform Technol Electron Eng 22, 1207–1220 (2021). https://doi.org/10.1631/FITEE.2000250
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2000250