Abstract
This study focuses on the multiphase flow properties of crowd motions. Stability is a crucial forewarning factor for the crowd. To evaluate the behaviors of newly arriving pedestrians and the stability of a crowd, a novel motion structure analysis model is established based on purposiveness, and is used to describe the continuity of pedestrians’ pursuing their own goals. We represent the crowd with self-driven particles using a destination-driven analysis method. These self-driven particles are trackable feature points detected from human bodies. Then we use trajectories to calculate these self-driven particles’ purposiveness and select trajectories with high purposiveness to estimate the common destinations and the inherent structure of the crowd. Finally, we use these common destinations and the crowd structure to evaluate the behavior of newly arriving pedestrians and crowd stability. Our studies show that the purposiveness parameter is a suitable descriptor for middle-density human crowds, and that the proposed destination-driven analysis method is capable of representing complex crowd motion behaviors. Experiments using synthetic and real data and videos of both human and animal crowds have been conducted to validate the proposed method.
摘要
本文主要研究人群运动的多相流特性。稳定性是人群的一个重要预警因素。为评价新到达行人的行为和人群的稳定性, 建立一种基于目的性的运动结构分析模型, 用于描述行人追求自身目标的连续性。使用目标驱动分析方法, 用自驱动粒子表示人群。这些自驱动粒子是人体图像的可跟踪特征点。然后, 利用轨迹计算这些自驱动粒子的目的性, 并选择高目的性轨迹估计公共目的地和人群内在结构。最后, 利用这些公共目的地和人群结构评估新到达行人的行为和人群稳定性。研究表明, 目的性参数是一个适于描述中等密度人群的描述符, 提出的目标驱动分析方法能够描述复杂人群运动行为。使用合成和真实的人类以及动物群体数据与视频, 验证了所提方法的有效性。
Similar content being viewed by others
References
Ali S, Shah M, 2007. A Lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. IEEE Conf on Computer Vision and Pattern Recognition, p.1–6. https://doi.org/10.1109/CVPR.2007.382977
Anh NTN, Daniel ZJ, Du NH, et al., 2011. A hybrid macro-micro pedestrians evacuation model to speed up simulation in road networks. Int Conf on Autonomous Agents and Multiagent Systems, p.371–383. https://doi.org/10.1007/978-3-642-27216-5_28
Bladel J, 1959. On Helmholtz’s theorem in finite regions. IRE Trans Antenn Propag, 7(5):119. https://doi.org/10.1109/TAP.1959.1144767
Brennen CE, 2005. Fundamentals of Multiphase Flow. Cambridge University Press, Cambridge, UK, p.386.
Brostow GJ, Cipolla R, 2006. Unsupervised Bayesian detection of independent motion in crowds. IEEE Conf on Computer Vision and Pattern Recognition, p.594–601. https://doi.org/10.1109/CVPR.2006.320
Cao T, Wu XY, Guo JN, et al., 2009. Abnormal crowd motion analysis. IEEE Int Conf on Robotics and Biomimetics, p.1709–1714. https://doi.org/10.1109/ROBIO.2009.5420408
Dabrowski M, Krotkiewski M, Schmid DW, 2008. Milamin: Matlab-based finite element method solver for large problems. Geochem Geophys Geosyst, 9(4):Q04030. https://doi.org/10.1029/2007GC001719
Helbing D, Farkas IJ, Molnar P, et al., 2002. Simulation of pedestrian crowds in normal and evacuation situations. In: Schreckenberg M, Sharma SD (Eds.), Pedestrian and Evacuation Dynamics. Springer, Berlin, p.21–58.
Helmuth JA, Burckhardt CJ, Koumoutsakos P, et al., 2007. A novel supervised trajectory segmentation algorithm identifies distinct types of human adenovirus motion in host cells. J Struct Biol, 159(3):347–358. https://doi.org/10.1016/j.jsb.2007.04.003
Huet S, Karatekin E, Tran VS, et al., 2006. Analysis of transient behavior in complex trajectories: application to secretory vesicle dynamics. Biophys J, 91(9):3542–3559. https://doi.org/10.1529/biophysj.105.080622
Ihaddadene N, Djeraba C, 2008. Real-time crowd motion analysis. 19th Int Conf on Pattern Recognition, p.1–4. https://doi.org/10.1109/ICPR.2008.4761041
Ijaz K, Sohail S, Hashish S, 2015. A survey of latest approaches for crowd simulation and modeling using hybrid techniques. 17th UKSIM-AMSS Int Conf on Modelling and Simulation, p.111–116. https://doi.org/10.1109/UKSim.2015.46
Karnik A, Goswami S, Guha R, 2007. Detecting obfuscated viruses using cosine similarity analysis. 1st Asia Int Conf on Modelling and Simulation, p.165–170. https://doi.org/10.1109/AMS.2007.31
Mehran R, Oyama A, Shah M, 2009. Abnormal crowd behavior detection using social force model. IEEE Conf on Computer Vision and Pattern Recognition, p.935–942. https://doi.org/10.1109/CVPR.2009.5206641
Muchoney D, Williamson J, 2001. A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data. IEEE Trans Geosci Remote Sens, 39(9):1969–1977. https://doi.org/10.1109/36.951087
Naseer T, Burgard W, Stachniss C, 2018. Robust visual localization across seasons. IEEE Trans Rob, 34(2):289–302. https://doi.org/10.1109/TRO.2017.2788045
Nurgaliev D, McDonald M, Benson B, et al., 2013. A robust quantification of galaxy cluster morphology using asymmetry and central concentration. Astrophys J, 779(2): 112. https://doi.org/10.1088/0004-637X/779/2/112
Patil S, van den Berg J, Curtis S, et al., 2010. Directing crowd simulations using navigation fields. IEEE Trans Vis Comput Graph, 17(2):244–254. https://doi.org/10.1109/TVCG.2010.33
Rabaud V, Belongie S, 2006. Counting crowded moving objects. IEEE Conf on Computer Vision and Pattern Recognition, p.705–711. https://doi.org/10.1109/CVPR.2006.92
Rodriguez M, Sivic J, Laptev I, et al., 2011. Data-driven crowd analysis in videos. Int Conf on Computer Vision, p.1235–1242. https://doi.org/10.1109/ICCV.2011.6126374
Shi JB, Tomasi C, 1994. Good features to track. IEEE Conf on Computer Vision and Pattern Recognition, p.593–600. https://doi.org/10.1109/CVPR.1994.323794
Shiwakoti N, Sarvi M, Burd M, 2014. Using non-human biological entities to understand pedestrian crowd behaviour under emergency conditions. Safety Sci, 66:1–8. https://doi.org/10.1016/j.ssci.2014.01.010
Sreenu G, Durai MAS, 2019. Intelligent video surveillance: a review through deep learning techniques for crowd analysis. J Big Data, 6(1):48. https://doi.org/10.1186/s40537-019-0212-5
Tripathi G, Singh K, Vishwakarma DK, 2018. Convolutional neural networks for crowd behaviour analysis: a survey. Vis Comput, 35(5):753–776. https://doi.org/10.1007/s00371-018-1499-5
Xiong MZ, Cai WT, Zhou SP, et al., 2009. A case study of multi-resolution modeling for crowd simulation. Proc Spring Simulation Multiconf, p.1–8. https://doi.org/10.5555/1639809.1639827
Xiong MZ, Tang SY, Zhao D, 2013. A hybrid model for simulating crowd evacuation. New Gener Comput, 31(3):211–235. https://doi.org/10.1007/s00354-013-0304-2
Ye J, 2011. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math Comput Modell, 53(1–2):91–97. https://doi.org/10.1016/j.mcm.2010.07.022
Yoon DD, Ayalew B, 2018. Social force control for humanlike autonomous driving. ASME Int Design Engineering Technical Conf and Computers and Information in Engineering Conf, Article V003T01A003. https://doi.org/10.1115/DETC2018-86288
Zhang XG, Yu QN, Yu H, 2018. Physics inspired methods for crowd video surveillance and analysis: a survey. IEEE Access, 6:66816–66830. https://doi.org/10.1109/ACCESS.2018.2878733
Zhao M, Cai W, Turner SJ, 2018. CLUST: simulating realistic crowd behaviour by mining pattern from crowd videos. Comput Graph Forum, 37(1):184–201. https://doi.org/10.1111/cgf.13259
Zhou BL, Tang XO, Wang XG, 2012a. Coherent filtering: detecting coherent motions from crowd clutters. European Conf on Computer Vision, p.857–871. https://doi.org/10.1007/978-3-642-33709-3_61
Zhou BL, Wang XG, Tang XO, 2012b. Understanding collective crowd behaviors: learning a mixture model of dynamic pedestrian-agents. IEEE Conf on Computer Vision and Pattern Recognition, p.2871–2878. https://doi.org/10.1109/CVPR.2012.6248013
Zhou BL, Tang XO, Wang XG, 2013. Measuring crowd collectiveness. IEEE Conf on Computer Vision and Pattern Recognition, p.3049–3056. https://doi.org/10.1109/CVPR.2013.392
Zhou MY, Carin L, 2015. Negative binomial process count and mixture modeling. IEEE Trans Patt Anal Mach Intell, 37(2):307–320. https://doi.org/10.1109/TPAMI.2013.211
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the Shenzhen Science and Technology Innovation Council (No. JCYJ20170410171923840), the National Key R&D Program of China (Nos. 2019YFB1310403 and 2019YFB1310402), the National Natural Science Foundation of China (Nos. U1613226 and U1813216), the Chinese University of Hong Kong, Shenzhen (No. PF.01.000143), and Shenzhen Institute of Artificial Intelligence and Robotics for Society
Contributors
Ning DING designed the algorithm, conducted experiments, and drafted the manuscript. Weimin QI helped organize the manuscript. Huihuan QIAN supervised the research. Ning DING, Weimin QI, and Huihuan QIAN revised and finalized the paper.
Compliance with ethics guidelines
Ning DING, Weimin QI, and Huihuan QIAN declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Ding, N., Qi, W. & Qian, H. Crowd modeling based on purposiveness and a destination-driven analysis method. Front Inform Technol Electron Eng 22, 1351–1369 (2021). https://doi.org/10.1631/FITEE.2000312
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2000312