Abstract
In this study, titanium disulfide (TiS2) polyvinyl alcohol (PVA) film-type saturable absorber (SA) is synthesized with a modulation depth of 5.08% and a saturable intensity of 10.62 MW/cm2 by liquid-phase exfoliation and spin-coating methods. Since TiS2-based SA has a strong nonlinear saturable absorption property, two types of optical soliton were observed in a mode-locked Er-doped fiber laser. When the pump power was raised to 67.3 mW, a conventional mode-locked pulse train with a repetition rate of 1.716 MHz and a pulse width of 6.57 ps was generated, and the output spectrum centered at 1556.98 nm and 0.466 nm spectral width with obvious Kelly sidebands was obtained. Another type of mode-locked pulse train with the maximum output power of 3.92 mW and pulse energy of 2.28 nJ at the pump power of 517.2 mW was achieved when the polarization controllers were adjusted. Since TiS2-based SA has excellent nonlinear saturable absorption characteristics, broad applications in ultrafast photonic are expected.
摘要
本文采用液相剥离法和旋涂法合成调制深度为5.08%、 饱和强度为10.62 MW/cm2的二硫化钛聚乙烯醇薄膜型可饱和吸收体. 由于二硫化钛可饱和吸收体具有很强的非线性饱和吸收特性, 在掺铒锁模光纤激光器中观测到两种类型的光孤子. 当泵浦功率达到67.3 mW时, 产生重复率为1.716 MHz、 脉宽为6.57 ps的传统锁模脉冲串, 其输出光谱中心为1556.98 nm、 半高全宽为0.466 nm, 且有明显对称的Kelly边带. 通过调整偏振控制器, 得到另一种锁模脉冲, 在517.2 mW泵浦功率下, 其最大输出功率为3.92 mW, 脉冲能量为2.28 nJ. 实验证明层状二维材料二硫化钛具有优异的非线性饱和吸收特性, 在超快光子学领域具有广阔应用前景.
Similar content being viewed by others
References
Bao QL, Zhang H, Wang Y, et al., 2009. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 19(19):3077–3083. https://doi.org/10.1002/adfm.200901007
Butler SZ, Hollen SM, Cao LY, et al., 2013. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7(4):2898–2926. https://doi.org/10.1021/nn400280c
Cai JH, Chen H, Chen SP, et al., 2018. Compressibility of dissipative solitons in mode-locked all-normal-dispersion fiber lasers. J Lightw Technol, 36(11):2142–2151. https://doi.org/10.1109/JLT.2018.2806226
Ciarrocchi A, Avsar A, Ovchinnikov D, et al., 2018. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat Commun, 9(1):919. https://doi.org/10.1038/s41467-018-03436-0
Ding SN, Jin Y, Chen X, et al., 2015. Tunable electrochemiluminescence of CdSe@ZnSe quantum dots by adjusting ZnSe shell thickness. Electrochem Commun, 55:30–33. https://doi.org/10.1016/j.elecom.2015.03.011
Dolui K, Sanvito S, 2016. Dimensionality-driven phonon softening and incipient charge density wave instability in TiS2. Europhys Lett, 115(4):47001. https://doi.org/10.1209/0295-5075/115/47001
Fang CM, de Groot RA, Haas C, 1997. Bulk and surface electronic structure of 1 T-TiS2 and 1 T-TiSe2. Phys Rev B, 56(8):4455–4463. https://doi.org/10.1103/PhysRevB.56.4455
Friend RH, Yoffe AD, 1987. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv Phys, 36(1):1–94. https://doi.org/10.1080/00018738700101951
Gao JJ, Zhou Y, Liu YJ, et al., 2019. Noise-like mode-locked Yb-doped fiber laser in a linear cavity based on SnS2 nanosheets as a saturable absorber. Appl Opt, 58(22): 6007–6011. https://doi.org/10.1364/AO.58.006007
Ge YQ, Zhu ZF, Xu YH, et al., 2018. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv Opt Mater, 6(4):1701166. https://doi.org/10.1002/adom.201701166
Ge YQ, Huang WC, Yang FM, et al., 2019. Beta-lead oxide quantum dot (β-PbO QD)/polystyrene (PS) composite films and their applications in ultrafast photonics. Nanoscale, 11(14):6828–6837. https://doi.org/10.1039/C9NR01112A
Guo B, 2018. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics. Chin Opt Lett, 16(2): 020004. https://doi.org/10.3788/COL201816.020004
Guo B, Xiao QL, Wang SH, et al., 2019. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photon Rev, 13(12):1800327. https://doi.org/10.1002/lpor.201800327
Guo J, Zhao JL, Huang DZ, et al., 2019. Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale, 11(13):6235–6242. https://doi.org/10.1039/C9NR00736A
Guo LG, Shang XX, Zhao R, et al., 2019. Nonlinear optical properties of ferromagnetic insulator Cr2Ge2Te6 and its application for demonstrating pulsed fiber laser. Appl Phys Expr, 12(8):082006. https://doi.org/10.7567/1882-0786/ab2dcc
Guo SY, Zhang YP, Ge YQ, et al., 2019. 2D V-V binary materials: status and challenges. Adv Mater, 31(39):1902352. https://doi.org/10.1002/adma.201902352
Hao C, Shen, YR, Wang, ZY, et al., 2016. Preparation and characterization of Fe2O3 nanoparticles by solid-phase method and its hydrogen peroxide sensing properties. ACS Sustain Chem Eng, 4(3):1069–1077. https://doi.org/10.1021/acssuschemeng.5b01150
Hendry E, Hale PJ, Moger J, et al., 2010. Coherent nonlinear optical response of graphene. Phys Rev Lett, 105(9): 097401. https://doi.org/10.1103/PhysRevLett.105.097401
Hu QY, Zhang XY, Liu ZJ, et al., 2019. High-order harmonic mode-locked Yb-doped fiber laser based on a SnSe2 saturable absorber. Opt Laser Technol, 119:105639. https://doi.org/10.1016/j.optlastec.2019.105639
Huang WC, Xing CY, Wang YZ, et al., 2018. Facile fabrication and characterization of two-dimensional bismuth(III) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale, 10(5):2404–2412. https://doi.org/10.1039/C7NR09046C
Huang WC, Zhang Y, You Q, et al., 2019. Enhanced photodetection properties of Tellurium@Selenium roll-to-roll nanotube heterojunctions. Small, 15(23):1900902. https://doi.org/10.1002/smll.201900902
Huang WC, Li C, Gao LF, et al., 2020. Emerging black phosphorus analogue nanomaterials for highperformance device applications. J Mater Chem C, 8(4):1172–1197. https://doi.org/10.1039/C9TC05558D
Jiang XT, Zhang LJ, Liu SX, et al., 2018. Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics. Adv Opt Mater, 6(16):1800561. https://doi.org/10.1002/adom.201800561
Keller U, 2003. Recent developments in compact ultrafast lasers. Nature, 424(6950):831–838. https://doi.org/10.1038/nature01938
Li L, Pang LH, Zhao QY, et al., 2020a. Niobium disulfide as a new saturable absorber for an ultrafast fiber laser. Nanoscale, 12(7):4537–4543. https://doi.org/10.1039/C9NR10873D
Li L, Pang LH, Zhao QY, et al., 2020b. VSe2 nanosheets for ultrafast fiber lasers. J Mater Chem C, 8(3):1104–1109. https://doi.org/10.1039/C9TC06159B
Li TY, Liu YH, Chitara B, et al., 2014. Li intercalation into 1D TiS2(en) chains. J Am Chem Soc, 136(8):2986–2989. https://doi.org/10.1021/ja4132399
Lin CW, Zhu XJ, Feng J, et al., 2013. Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J Am Chem Soc, 135(13): 5144–5151. https://doi.org/10.1021/ja400041f
Liu JS, Li XH, Guo YX, et al., 2019. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small, 15(38):1902811. https://doi.org/10.1002/smll.201902811
Liu WJ, Liu ML, Liu XM, et al., 2020a. Recent advances of 2D materials in nonlinear photonics and fiber lasers. Adv Opt Mater, 8(8):1901631. https://doi.org/10.1002/adom.201901631
Liu WJ, Liu ML, Liu XM, et al., 2020b. SnSSe as a saturable absorber for an ultrafast laser with superior stability. Opt Lett, 45(2):419–422. https://doi.org/10.1364/OL.380183
Mak KF, Lee C, Hone J, et al., 2010. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 105(13): 136805. https://doi.org/10.1103/PhysRevLett.105.136805
Ming N, Tao SN, Yang WQ, et al., 2018. Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber. Opt Expr, 26(7): 9017–9026. https://doi.org/10.1364/OE.26.009017
Niu KD, Chen QY, Sun RY, et al., 2017. Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber. Opt Mater Expr, 7(11):3934–3943. https://doi.org/10.1364/OME.7.003934
Niu KD, Sun RY, Chen QY, et al., 2018. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber. Photon Res, 6(2):72–76. https://doi.org/10.1364/PRJ.6.000072
Oktem B, Ülgüdür C, Ilday FÖ, 2010. Soliton-similariton fibre laser. Nat Photon, 4(5):307–311. https://doi.org/10.1038/nphoton.2010.33
Park KH, Choi J, Kim HJ, et al., 2008. Unstable single-layered colloidal TiS2 nanodisks. Small, 4(7):945–950. https://doi.org/10.1002/smll.200700804
Sandoval SJ, Chen XK, Irwin JC, 1992. Raman spectra of AgxTiS2 and lattice dynamics of TiS2. Phys Rev B, 45(24):14347–14353. https://doi.org/10.1103/PhysRevB.45.14347
Shah L, Fermann ME, Dawson JW, et al., 2006. Micromachining with a 50 W, 50 µJ, sub-picosecond fiber laser system. Opt Expr, 14(25):12546–12551. https://doi.org/10.1364/OE.14.012546
Sheng QW, Feng M, Xin W, et al., 2013. Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber. Opt Expr, 21(12):14859–14866. https://doi.org/10.1364/OE.21.014859
Song YF, Shi XJ, Wu CF, et al., 2019. Recent progress of study on optical solitons in fiber lasers. Appl Phys Rev, 6(2):021313. https://doi.org/10.1063/1.5091811
Suri D, Siva V, Joshi S, et al., 2017. A study of electron and thermal transport in layered titanium disulphide single crystals. J Phys Conden Mat, 29(48):485708. https://doi.org/10.1088/1361-648X/aa90c5
Varma SJ, Kumar J, Liu Y, et al., 2017. 2D TiS2 layers: a superior nonlinear optical limiting material. Adv Opt Mater, 5(24):1700713. https://doi.org/10.1002/adom.201700713
Wu LM, Xie ZJ, Lu L, et al., 2018. Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv Opt Mater, 6(2):1700985. https://doi.org/10.1002/adom.201700985
Xie ZJ, Zhang F, Liang ZM, et al., 2019. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photon Res, 7(5):494–502. https://doi.org/10.1364/PRJ.7.000494
Xing CY, Xie ZJ, Liang ZM, et al., 2017. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics. Adv Opt Mater, 5(24):1700884. https://doi.org/10.1002/adom.201700884
Xu NN, Ming N, Han XL, et al., 2019. Large-energy passively Q-switched Er-doped fiber laser based on CVD-Bi2Se3 as saturable absorber. Opt Mater Expr, 9(2):373–383. https://doi.org/10.1364/OME.9.000373
Xu NN, Ma PF, Fu SG, et al., 2020. Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations. Nanophotonics, 9(9): 2783–2795. https://doi.org/10.1515/nanoph-2019-0545
Xu XD, Liu W, Kim Y, et al., 2014. Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today, 9(5):604–630. https://doi.org/10.1016/j.nantod.2014.09.005
Xu YJ, Shi Z, Shi XY, et al., 2019. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale, 11(31): 14491–14527. https://doi.org/10.1039/C9NR04348A
Yan PG, Chen H, Yin JD, et al., 2017. Large-area tungsten disulfide for ultrafast photonics. Nanoscale, 9(5):1871–1877. https://doi.org/10.1039/C6NR09183K
Zeng ZY, Yin ZY, Huang X, et al., 2011. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem, 123(47):11289–11293. https://doi.org/10.1002/ange.201106004
Zeng ZY, Sun T, Zhu JX, et al., 2012. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew Chem Int, 51(36):9052–9056. https://doi.org/10.1002/anie.201204208
Zhang HN, Liu J, 2016. Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1 µm region. Opt Lett, 41(6):1150–1152. https://doi.org/10.1364/OL.41.001150
Zhang HN, Ma PF, Zhu MX, et al., 2020. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics, 9(8):2557–2567. https://doi.org/10.1515/nanoph-2020-0116
Zhang X, Tan QH, Wu JB, et al., 2016. Review on the Raman spectroscopy of different types of layered materials. Nanoscale, 8(12):6435–6450. https://doi.org/10.1039/C5NR07205K
Zhang XQ, Zhong Y, Xia XH, et al., 2018. Metal-embedded porous graphitic carbon fibers fabricated from bamboo sticks as a novel cathode for lithium-sulfur batteries. ACS Appl Mater Interf, 10(16):13598–13605. https://doi.org/10.1021/acsami.8b02504
Zhao Y, Guo PL, Li XH, et al., 2019. Ultrafast photonics application of graphdiyne in the optical communication region. Carbon, 149:336–341. https://doi.org/10.1016/j.carbon.2019.04.075
Zhu X, Chen S, Zhang M, et al., 2018. TiS2-based saturable absorber for ultrafast fiber lasers. Photon Res, 6(10): C44–C48. https://doi.org/10.1364/PRJ.6.000C44
Zhu ZF, Zou YS, Hu WD, et al., 2016. Near-infrared plasmonic 2D semimetals for applications in communication and biology. Adv Funct Mater, 26(11):1793–1802. https://doi.org/10.1002/adfm.201504884
Author information
Authors and Affiliations
Contributions
Xinxin SHANG designed the research and drafted the manuscript. Linguang GUO helped organize the manuscript. Huanian ZHANG processed the data. Dengwang LI and Qingyang YUE collected the relevant materials. Xinxin SHANG revised and finalized the paper.
Corresponding author
Ethics declarations
Xinxin SHANG, Linguang GUO, Huanian ZHANG, Dengwang LI, and Qingyang YUE declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (Nos. 11904213 and 11747149), the Shandong Provincial Natural Science Foundation (Nos. ZR2018QF006 and ZR2019MF029), the China Postdoctoral Science Foundation (No. 2016M602177), and the Opening Foundation of Shandong Provincial Key Laboratory of Laser Technology and Application
Rights and permissions
About this article
Cite this article
Shang, X., Guo, L., Zhang, H. et al. Passive mode-locked Er-doped fiber laser pulse generation based on titanium disulfide saturable absorber. Front Inform Technol Electron Eng 22, 756–766 (2021). https://doi.org/10.1631/FITEE.2000341
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2000341