Abstract
Robots need more intelligence to complete cognitive tasks in home environments. In this paper, we present a new cloud-assisted cognition adaptation mechanism for home service robots, which learns new knowledge from other robots. In this mechanism, a change detection approach is implemented in the robot to detect changes in the user’s home environment and trigger the adaptation procedure that adapts the robot’s local customized model to the environmental changes, while the adaptation is achieved by transferring knowledge from the global cloud model to the local model through model fusion. First, three different model fusion methods are proposed to carry out the adaptation procedure, and two key factors of the fusion methods are emphasized. Second, the most suitable model fusion method and its settings for the cloud-robot knowledge transfer are determined. Third, we carry out a case study of learning in a changing home environment, and the experimental results verify the efficiency and effectiveness of our solutions. The experimental results lead us to propose an empirical guideline of model fusion for the cloud-robot knowledge transfer.
摘要
机器人需要更强的智能以胜任家居环境中的认知任务. 本文提出一种新的云辅助家居服务机器人认知适应机制, 它可以从其他机器人处学习新知识. 在该机制中, 在机器人处部署一种变化检测方法以检测用户家居环境变化, 并触发认知适应过程, 实现经云端从其他机器人处学习新知识. 而认知适应是通过模型融合方法将知识从云端全局模型迁移至机器人本地模型得以实现. 首先, 提出3种不同模型融合方法执行认知适应过程, 并给出影响模型融合方法的两个关键因素. 其次, 确定最适合云端至机器人知识转移的模型融合方法及其设置. 再次, 在一个变化的用户家居环境中进行案例研究,, 实验结果验证了所提方案的效率和有效性. 基于实验结果, 提出一种云端至机器人知识转移模型融合的经验准则.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arumugam R, Enti VR, Liu BB, et al., 2010. DAvinCi: a cloud computing framework for service robots. IEEE Int Conf on Robotics and Automation, p.3084–3089. https://doi.org/10.1109/ROBOT.2010.5509469
Baena-García M, del Campo-Ávila J, Fidalgo R, et al., 2006. Early drift detection method. Proc 4th Int Workshop on Knowledge Discovery from Data Streams, p.77–86.
Disabato S, Roveri M, 2019. Learning convolutional neural networks in presence of concept drift. Int Joint Conf on Neural Networks, p.1–8. https://doi.org/10.1109/IJCNN.2019.8851731
Ditzler G, Roveri M, Alippi C, et al., 2015. Learning in nonstationary environments: a survey. IEEE Comput Intell Mag, 10(4):12–25. https://doi.org/10.1109/MCI.2015.2471196
Fachantidis N, Dimitriou AG, Pliasa S, et al., 2018. Android OS mobile technologies meets robotics for expandable, exchangeable, reconfigurable, educational, stem-enhancing, socializing robot. Interactive Mobile Communication Technologies and Learning, p.487–497. https://doi.org/10.1007/978-3-319-75175-7_48
Gama J, Medas P, Castillo G, et al., 2004. Learning with drift detection. Proc 17th Brazilian Symp on Artificial Intelligence, p.286–295. https://doi.org/10.1007/978-3-540-28645-5_29
Gouveia BD, Portugal D, Silva DC, et al., 2015. Computation sharing in distributed robotic systems: a case study on SLAM. IEEE Trans Autom Sci Eng, 12(2):410–422. https://doi.org/10.1109/TASE.2014.2357216
Graf B, Staab H, 2009. Service robots and automation for the disabled/limited. In: Nof SY (Ed.), Springer Handbook of Automation. Springer Berlin Heidelberg, p.1485–1502. https://doi.org/10.1007/978-3-540-78831-7_84
Huaimin W, Bo D, Xu J, 2018. Cloud robotics: a distributed computing view. In: Jones C, Wang J, Zhan NJ (Eds.), Symp on Real-Time and Hybrid Systems. Springer, Cham, p.231–245. https://doi.org/10.1007/978-3-030-01461-2_12
Hunziker D, Gajamohan M, Waibel M, et al., 2013. Rapyuta: the RoboEarth cloud engine. IEEE Int Conf on Robotics and Automation, p.438–444. https://doi.org/10.1109/ICRA.2013.6630612
Kuncheva LI, 2013. Change detection in streaming multi-variate data using likelihood detectors. IEEE Trans Knowl Data Eng, 25(5):1175–1180. https://doi.org/10.1109/TKDE.2011.226
LeCun Y, Bengio Y, Hinton G, 2015. Deep learning. Nature, 521(7553):436–444. https://doi.org/10.1038/nature14539
McMahan HB, Moore E, Ramage D, et al., 2017. Communication-efficient learning of deep networks from decentralized data. https://arxiv.org/abs/1602.05629
Page ES, 1954. Continuous inspection schemes. Biometrika, 41(1–2):100–115. https://doi.org/10.1093/biomet/41.1-2.100
Pedregosa F, Varoquaux G, Gramfort A, et al., 2011. Scikitlearn: machine learning in Python. J Mach Learn Res, 12:2825–2830.
Secker J, Hill R, Villeneau L, et al., 2003. Promoting independence: but promoting what and how? Ageing Soc, 23(3):375–391. https://doi.org/10.1017/S0144686X03001193
Shuai W, Chen XP, 2019. KeJia: towards an autonomous service robot with tolerance of unexpected environmental changes. Front Inform Technol Electron Eng, 20(3):307–317. https://doi.org/10.1631/FITEE.1900096
Siciliano B, Khatib O, 2016. Springer Handbook of Robotics. Springer Berlin Heidelberg, Germany. Simonyan K, Zisserman A, 2014. Very deep convolutional networks for large-scale image recognition. https://arxiv.org/abs/1409.1556
TensorFlow, 2020. TensorFlow-Slim Image Classification Model Library. https://github.com/tensorflow/models/tree/master/research/slim
United Nations, 2020. Ageing. https://www.un.org/en/sections/issues-depth/ageing/
Wang Q, Zhang S, Sheng W, et al., 2021. Multi-style learning for adaptation of perception intelligence in home service robots. Patt Recogn Lett, 151:243–251.
Yang Z, Al-Dahidi S, Baraldi P, et al., 2020. A novel concept drift detection method for incremental learning in nonstationary environments. IEEE Trans Neur Netw Learn Syst, 31(1):309–320. https://doi.org/10.1109/TNNLS.2019.2900956
Yoon J, Jeong W, Lee G, et al., 2020. Federated continual learning with adaptive parameter communication. https://arxiv.org/abs/2003.03196v1
Yosinski J, Clune J, Bengio Y, et al., 2014. How transferable are features in deep neural networks? https://arxiv.org/abs/1411.1792v1
Žliobaitė I, 2010. Learning under concept drift: an overview. https://arxiv.org/abs/1010.4784
Žliobaitė I, Pechenizkiy M, Gama J, 2016. An overview of concept drift applications. In: Japkowicz N, Stefanowski J (Eds.), Big Data Analysis: New Algorithms for a New Society. Springer, Cham, p.91–114. https://doi.org/10.1007/978-3-319-26989-4_4
Zweigle O, van de Molengraft R, d’Andrea R, et al., 2009. RoboEarth: connecting robots worldwide. Proc 2nd Int Conf on Interaction Sciences: Information Technology, p.184–191. https://doi.org/10.1145/1655925.1655958
Author information
Authors and Affiliations
Contributions
Qi WANG, Weihua SHENG, and Meiqin LIU designed the research. Qi WANG processed the data and drafted the paper. Zhen FAN, Weihua SHENG, and Meiqin LIU helped organize the paper. All the authors revised and finalized the paper.
Corresponding author
Ethics declarations
Qi WANG, Zhen FAN, Weihua SHENG, Senlin ZHANG, and Meiqin LIU declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (Nos. U21A20485 and 62088102), the Natural Science Foundation of China-Shenzhen Basic Research Center Project (No. U1713216), and the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China (No. ICT20026)
Rights and permissions
About this article
Cite this article
Wang, Q., Fan, Z., Sheng, W. et al. Cloud-assisted cognition adaptation for service robots in changing home environments. Front Inform Technol Electron Eng 23, 246–257 (2022). https://doi.org/10.1631/FITEE.2000431
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2000431