Skip to main content
Log in

Empirical study on directional millimeter-wave propagation in vehicle-to-infrastructure communications between road and roadside

车地通信中定向毫米波传播的实证研究

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

With the increased demand for unmanned driving technology and big-data transmission between vehicles, millimeter-wave (mmWave) technology, due to its characteristics of large bandwidth and low latency, is considered to be the key technology in future vehicular communication systems. Different from traditional cellular communication, the vehicular communication environment has the characteristics of long distance and high moving speed. However, the existing communication channel tests mostly select low-speed and small-range communication scenarios for testing. The test results are insufficient to provide good data support for the existing vehicular communication research; therefore, in this paper, we carry out a large number of channel measurements in mmWave vehicle-to-infrastructure (V2I) long-distance communication scenarios in the 41 GHz band. We study the received signal strength (RSS) in detail and find that the vibration features of RSS can be best modeled by the modified two-path model considering road roughness. Based on the obtained RSS, a novel close-in (CI) model considering the effect of the transmitter (TX) and receiver (RX) antenna heights (CI-TRH model) is developed. As for the channel characteristics, the distribution of the root-mean-square (RMS) delay spread is analyzed. We also extend the two-section exponential power delay profile (PDP) model to a more general form so that the distance-dependent features of the mmWave channel can be better modeled. Furthermore, the variation in both RMS delay spread and PDP shape parameters with TX-RX distance is analyzed. Analysis results show that TX and RX antenna heights have an effect on large-scale fading. Our modified two-path model, CI-TRH model, and two-section exponential PDP model are proved to be effective.

概要

随着对高速移动通信日渐增长的需求,人们迫切需要高速车载通信系统。毫米波频段由于其较广的带宽和丰富的频率资源而受到越来越多的关注。然而毫米波通信系统的设计高度依赖于各种环境下的无线信道特性; 因此,有必要对不同场景下毫米波信道进行研究。现有的对于长距离传输中毫米波的通信信道特性的研究较为缺乏。本文基于信道实测数据研究了在1900米的长传输距离下41GHz毫米波的车地通信的信道特征,为今后长距离传输下车地毫米波系统设计提供了研究基础。

41GHz毫米波通信信道收发器数字基带由模数转换器AD6688、数模转换器AD9163、两个XC7VX690TFPGA和ZYNQ7045芯片组成,在接收机的射频前端使用AD8362芯片记录RSSI值。采用高增益10°半功率波束宽度(HPBW)的定向喇叭天线。利用天线增益高的优点,毫米波探测器能够在长距离传播引起的高信号衰减后检测到毫米波信号。采用基于Golay互补序列对的时域信道测量方法完成车地场景下的信道脉冲响应(CIRs)测量。

测量是在四川省成都市的天府大道进行的,接收机天线安装在路边,发射机天线固定在车顶。天线离地高度均为2米。在测量过程中,汽车以50km/h的恒定速度向接收机天线行驶,没有其他移动的车辆或散射体,也没有明显的遮挡,发射机和接收机始终处于视线(LoS)条件下。

结合所测数据,分析得出该场景可被建模为考虑了地面粗糙度的两径模型,从发射机到接收机有两条路径,包括直接路径和反射路径。然而,考虑到光滑路面情况,所得结果和实际接收信号强度指示(RSSI)不符。对于表面粗糙的介质,部分电磁能量会因粗糙表面的散射而损失。为获得更好结果,采用的处理方法是引入反射系数。从最终得到的结果可以看出,在引入表面粗糙度后,接收信号强度指示的深衰落明显减小,更加符合实测数据。

均方根时延扩展(RMS delay spread)测量的RMS延迟范围为2~35ns,平均值为6.99 ns。可以发现实测均方根时延扩展数据与对数正态分布Nlog(1.78, 0.582)较为匹配。除了分析均方根时延扩展的总体分布外,还需讨论均方根时延扩展与发射机—接收机距离的关系。研究均方根时延依赖性的一种有效方法是将发射机—接收机路程上的原始数据划分为若干个单元,使每个单元中的CIRs可以看作是平稳的。随着距离的增加,均方根时延扩展值减小,其原因是由于窄波束天线过滤了大量的散射体,使得直射路径的衰减比散射路径慢得多。

提出一种更为通用的功率延迟分布(PDP)模型,称为两段指数模型,将功率延迟分布曲线分为两段。两段指数模型涵盖了一段指数模型的所有适用情况,并且可以解决噪底的问题。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Analog Devices, 2013. AD8362: 50 Hz to 3.8 GHz 65 dB TruPwr™ Detector. Norwood, MA 02062-9106, USA.

  • Bernadó L, Zemen T, Tufvesson F, et al., 2015. Time- and frequency-varying K-factor of non-stationary vehicular channels for safety-relevant scenarios. IEEE Trans Intell Transp Syst, 16(2):1007–1017. https://doi.org/10.1109/TITS.2014.2349364

    Google Scholar 

  • Blumenstein J, Vychodil J, Pospisil M, et al., 2016. Effects of vehicle vibrations on mm-wave channel: Doppler spread and correlative channel sounding. Proc IEEE 27th Annual Int Symp on Personal, Indoor, and Mobile Radio Communications, p.1–5. https://doi.org/10.1109/PIMRC.2016.7794619

  • Blumenstein J, Prokes A, Vychodil J, et al., 2017. Time-varying K factor of the mm-Wave vehicular channel: velocity, vibrations and the road quality influence. Proc IEEE 28th Annual Int Symp on Personal, Indoor, and Mobile Radio Communications, p.1–5. https://doi.org/10.1109/PIMRC.2017.8292755

  • Blumenstein J, Prokes A, Vychodil J, et al., 2018. Measured high-resolution power-delay profiles of nonstationary vehicular millimeter wave channels. Proc IEEE 29th Annual Int Symp on Personal, Indoor and Mobile Radio Communications, p.1–5. https://doi.org/10.1109/PIMRC.2018.8580949

  • Boban M, Dupleich D, Iqbal N, et al., 2019. Multi-band vehicle-to-vehicle channel characterization in the presence of vehicle blockage. IEEE Access, 7:9724–9735. https://doi.org/10.1109/ACCESS.2019.2892238

    Google Scholar 

  • Groll H, Zöchmann E, Pratschner S, et al., 2019. Sparsity in the delay-Doppler domain for measured 60 GHz vehicle-to-infrastructure communication channels. Proc IEEE Int Conf on Communications Workshops, p.1–6. https://doi.org/10.1109/ICCW.2019.8756930

  • Guan K, He DP, Ai B, et al., 2018. Realistic channel characterization for 5G millimeter-wave railway communications. Proc IEEE Globecom Workshops, p.1–6. https://doi.org/10.1109/GLOCOMW.2018.8644076

  • He DP, Ai B, Guan K, et al., 2018. Channel measurement, simulation, and analysis for high-speed railway communications in 5G millimeter-wave band. IEEE Trans Intell Transp Syst, 19(10):3144–3158. https://doi.org/10.1109/TITS.2017.2771559

    Google Scholar 

  • He DP, Wang LH, Guan K, et al., 2019. Channel characterization for mmWave vehicle-to-infrastructure communications in urban street environment. Proc 13th European Conf on Antennas and Propagation, p.1–5.

  • IEEE, 2012. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for very High Throughput in the 60 GHz Band. IEEE Standard 802.11ad-2012.

  • ITU, 2012. Propagation Data and Prediction Methods Required for the Design of Terrestrial Broadband Radio Access Systems Operating in a Frequency Range from 3 to 60 GHz. ITU-R P.1410-5.

  • ITU, 2015. Effects of Building Materials and Structures on Radiowave Propagation above about 100 MHz. ITU-R P.2040-1.

  • Lei MY, Zhang JH, Lei T, et al., 2016. 28-GHz indoor channel measurements and analysis of propagation characteristics. Proc IEEE 25th Annual Int Symp on Personal, Indoor, and Mobile Radio Communication, p.208–212. https://doi.org/10.1109/PIMRC.2014.7136161

  • MacCartney GRJr, Rappaport TS, 2017. Rural macrocell path loss models for millimeter wave wireless communications. IEEE J Sel Areas Commun, 35(7):1663–1677. https://doi.org/10.1109/JSAC.2017.2699359

    Google Scholar 

  • MacCartney GRJr, Rappaport TS, Sun S, et al., 2015. Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks. IEEE Access, 3:2388–2424. https://doi.org/10.1109/ACCESS.2015.2486778

    Google Scholar 

  • Matolak DW, Sun RY, 2014. Initial results for air-ground channel measurements & modeling for unmanned aircraft systems: over-sea. Proc IEEE Aerospace Conf, p.1–15. https://doi.org/10.1109/AERO.2014.6836369

  • Mecklenbrauker CF, Molisch AF, Karedal J, et al., 2011. Vehicular channel characterization and its implications for wireless system design and performance. Proc IEEE, 99(7):1189–1212. https://doi.org/10.1109/JPROC.2010.2101990

    Google Scholar 

  • Meinel H, Plattner A, 1983. Millimetre-wave propagation along railway lines. IEE Proc F Commun Radar Signal Process, 130(7):688–694. https://doi.org/10.1049/ip-f-1.1983.0102

    Google Scholar 

  • Park JJ, Lee J, Kim KW, et al., 2018. 28 GHz Doppler measurements in high-speed expressway environments. Proc IEEE 29th Annual Int Symp on Personal, Indoor and Mobile Radio Communications, p.1132–1133. https://doi.org/10.1109/PIMRC.2018.8580954

  • Parsons, 2000. The Mobile Radio Propagation Channel (2nd Ed.). John Wiley & Sons, New York, USA.

    Google Scholar 

  • Popović BM, 1999. Efficient golay correlator. Electron Lett, 35(17):1427–1428. https://doi.org/10.1049/el:19991019

    Google Scholar 

  • Prokes A, Vychodil J, Pospisil M, et al., 2016. Time-domain nonstationary intra-car channel measurement in 60 GHz band. Proc Int Conf on Advanced Technologies for Communications, p.1–6. https://doi.org/10.1109/ATC.2016.7764753

  • Prokes A, Vychodil J, Mikulasek T, et al., 2018. Time-domain broadband 60 GHz channel sounder for vehicle-to-vehicle channel measurement. Proc IEEE Vehicular Networking Conf, p.1–7. https://doi.org/10.1109/VNC.2018.8628344

  • Rahman AU, Chandra A, Prokes A, et al., 2019. Doppler characteristics of 60 GHz mmWave I2I channels. Proc ICC IEEE Int Conf on Communications, p.1–6. https://doi.org/10.1109/ICC.2019.8761798

  • Rappaport TS, MacCartney GR, Samimi MK, et al., 2015. Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans Commun, 63(9):3029–3056. https://doi.org/10.1109/TCOMM.2015.2434384

    Google Scholar 

  • Sánchez MG, Táboas MP, Cid EL, 2017. Millimeter wave radio channel characterization for 5G vehicle-to-vehicle communications. Measurement, 95:223–229. https://doi.org/10.1016/j.measurement.2016.10.018

    Google Scholar 

  • Soliman M, Dawoud Y, Sand S, et al., 2018. Influences of train wagon vibrations on the mmwave wagon-to-wagon channel. Proc 12th European Conf on Antennas and Propagation, p.1–5. https://doi.org/10.1049/cp.2018.0962

  • Sun S, Rappaport TS, Thomas TA, et al., 2016. Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications. IEEE Trans Veh Technol, 65(5):2843–2860. https://doi.org/10.1109/TVT.2016.2543139

    Google Scholar 

  • Yan D, Guan K, He DP, et al., 2020. Channel characterization for vehicle-to-infrastructure communications in millimeter-wave band. IEEE Access, 8:42325–42341. https://doi.org/10.1109/ACCESS.2020.2977208

    Google Scholar 

  • Yang BQ, Yu ZQ, Zhang RQ, et al., 2019. Local oscillator phase shifting and harmonic mixing-based high-precision phased array for 5G millimeter-wave communications. IEEE Trans Microw Theory Tech, 67(7):3162–3173. https://doi.org/10.1109/TMTT.2019.2899598

    Google Scholar 

  • Yu DZ, Yue GR, Wei N, et al., 2019. Empirical study on directional millimeter-wave propagation in railway communications between train and trackside. IEEE J Sel Areas Commun, 38(12):2931–2945. https://doi.org/10.1109/JSAC.2020.3005488

    Google Scholar 

  • Yue GR, Yu DZ, Qiu H, et al., 2019a. Measurements and ray tracing simulations for non-line-of-sight millimeter-wave channels in a confined corridor environment. IEEE Access, 7:85066–85081. https://doi.org/10.1109/ACCESS.2019.2924510

    Google Scholar 

  • Yue GR, Yu DZ, Cheng L, et al., 2019b. Millimeter-wave system for high-speed train communications between train and trackside: system design and channel measurements. IEEE Trans Veh Technol, 68(12):11746–11761. https://doi.org/10.1109/TVT.2019.2919625

    Google Scholar 

  • Zhang X, Qiu G, Zhang JH, et al., 2019. Analysis of millimeter-wave channel characteristics based on channel measurements in indoor environments at 39 GHz. Proc 11th Int Conf on Wireless Communications and Signal Processing, p.1–6. https://doi.org/10.1109/WCSP.2019.8928017

  • Zhou CM, 2017. Ray tracing and modal methods for modeling radio propagation in tunnels with rough walls. IEEE Trans Antenn Propag, 65(5):2624–2634. https://doi.org/10.1109/TAP.2017.2677398

    Google Scholar 

  • Zöchmann E, Mecklenbrauker CF, Lerch M, et al., 2018. Measured delay and Doppler profiles of overtaking vehicles at 60 GHz. Proc 12th European Conf on Antennas and Propagation, p.1–5. https://doi.org/10.1049/cp.2018.0470

  • Zöchmann E, Hofer M, Lerch M, et al., 2019. Position-specific statistics of 60 GHz vehicular channels during overtaking. IEEE Access, 7:14216–14232. https://doi.org/10.1109/ACCESS.2019.2893136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Lin YANG designed the research. Xichen LIU and Daizhong YU processed the data. Xichen LIU drafted the manuscript. Daizhong YU helped organize the manuscript. Xichen LIU, Lin YANG, and Daizhong YU revised and finalized the paper.

Corresponding author

Correspondence to Lin Yang  (杨霖).

Additional information

Compliance with ethics guidelines

Xichen LIU, Lin YANG, and Daizhong YU declare that they have no conflict of interest.

Project supported by the National Key Research and Development Program of China (No. 2020YFB1805001), the National Natural Science Foundation of China (Nos. 91938202 and 61801102), the Defense Industrial Technology Development Program, China (No. JCKY2016204A603), and the 5G Millimeter Wave High-Speed Channel Simulator, China (No. 2021YFG0342)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, L. & Yu, D. Empirical study on directional millimeter-wave propagation in vehicle-to-infrastructure communications between road and roadside. Front Inform Technol Electron Eng 22, 503–516 (2021). https://doi.org/10.1631/FITEE.2000464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.2000464

Key words

CLC number

关键词

Navigation