Abstract
The input/output (I/O) pins of an industry-level fluorescent optical fiber temperature sensor readout circuit need on-chip integrated high-performance electro-static discharge (ESD) protection devices. It is difficult for the failure level of basic N-type buried layer gate-controlled silicon controlled rectifier (NBL-GCSCR) manufactured by the 0.18 µm standard bipolar-CMOS-DMOS (BCD) process to meet this need. Therefore, we propose an on-chip integrated novel deep N-well gate-controlled SCR (DNW-GCSCR) with a high failure level to effectively solve the problems based on the same semiconductor process. Technology computer-aided design (TCAD) simulation is used to analyze the device characteristics. SCRs are tested by transmission line pulses (TLP) to obtain accurate ESD parameters. The holding voltage (24.03 V) of NBL-GCSCR with the longitudinal bipolar junction transistor (BJT) path is significantly higher than the holding voltage (5.15 V) of DNW-GCSCR with the lateral SCR path of the same size. However, the failure current of the NBL-GCSCR device is 1.71 A, and the failure current of the DNW-GCSCR device is 20.99 A. When the gate size of DNW-GCSCR is increased from 2 µm to 6 µm, the holding voltage is increased from 3.50 V to 8.38 V. The optimized DNW-GCSCR (6 µm) can be stably applied on target readout circuits for on-chip electrostatic discharge protection.
摘要
工业级荧光光纤温度传感器读出电路的I/O引脚需要片上集成高性能静电放电(ESD)保护器件。采用0.18μm标准BCD工艺制造的基本N型埋层栅控可控硅(NBL-GCSCR)失效等级难以满足需求。因此,基于相同半导体工艺,提出片上集成新型高失效等级深N阱栅控可控硅(DNW-GCSCR)以有效解决上述问题。采用技术计算机辅助设计(TCAD)仿真分析器件特性。可控硅通过传输线脉冲(TLP)进行测试,以获得准确ESD参数。具有纵向双极晶体管(BJT)路径的NBL-GCSCR维持电压(24.03V)明显高于具有相同尺寸横向可控硅路径的DNW-GCSCR维持电压(5.15V)。NBL-GCSCR器件的失效电流为1.71A,DNW-GCSCR器件的失效电流为20.99A。当DNW-GCSCR栅极尺寸从2μm增加到6μm时,维持电压为从3.50V增加到8.38V。优化后的DNW-GCSCR(栅极尺寸6μm)可以稳定应用于目标读出电路的片上静电放电保护。
Similar content being viewed by others
References
Chen JT, Lin CY, Ker MD, 2017. On-chip ESD protection device for high-speed I/O applications in CMOS technology. IEEE Trans Electron Dev, 64(10):3979–3985. https://doi.org/10.1109/TED.2017.2734059
Chen XJ, Wang Y, Jin XL, et al., 2019. An ESD robust high holding voltage dual-direction SCR with symmetrical I-V curve by inserting a floating P+ in PWell. Sol-State Electron, 160:107627. https://doi.org/10.1016/j.sse.2019.107627
Dai CT, Ker MD, 2018. Comparison between high-holding-voltage SCR and stacked low-voltage devices for ESD protection in high-voltage applications. IEEE Trans Electron Dev, 65(2):798–802. https://doi.org/10.1109/TED.2017.2785121
Du FB, Hou F, Liu ZW, et al., 2019. Bidirectional silicon-controlled rectifier for advanced ESD protection applications. Electron Lett, 55(2):112–114. https://doi.org/10.1049/el.2018.6686
Hou F, Liu JZ, Liu ZW, et al., 2019. New diode-triggered silicon-controlled rectifier for robust electrostatic discharge protection at high temperatures. IEEE Trans Electron Dev, 66(4):2044–2048. https://doi.org/10.1109/TED.2019.2900052
Hu T, Dong SR, Jin H, et al., 2018. A double snapback SCR ESD protection scheme for 28nm CMOS process. Microelectron Reliab, 84:20–25. https://doi.org/10.1016/j.microrel.2018.03.010
Huang XZ, Liou JJ, Liu ZW, et al., 2016. A new high holding voltage dual-direction SCR with optimized segmented topology. IEEE Electron Dev Lett, 37(10):1311–1313. https://doi.org/10.1109/LED.2016.2598063
Lee JH, Prabhu M, Natarajan MI, 2018. Engineering ESD robust LDMOS SCR devices in FinFET technology. IEEE Electron Dev Lett, 39(7):1011–1013. https://doi.org/10.1109/LED.2018.2838760
Liang HL, Xu Q, Zhu L, et al., 2019. Design of a gate diode triggered SCR for dual-direction high-voltage ESD protection. IEEE Electron Dev Lett, 40(2):163–166. https://doi.org/10.1109/LED.2018.2890105
Qi Z, Qiao M, Liang LF, et al., 2019. Novel silicon-controlled rectifier with snapback-free performance for high-voltage and robust ESD protection. IEEE Electron Dev Lett, 40(3): 435–438. https://doi.org/10.1109/LED.2019.2894646
Wang Y, Jin XL, Yang L, et al., 2015. Robust dual-direction SCR with low trigger voltage, tunable holding voltage for high-voltage ESD protection. Microelectron Reliab, 55(3–4):520–526. https://doi.org/10.1016/j.microrel.2014.12.006
Wang Y, Jin XL, Peng Y, et al., 2019. A high failure-current gate-controlled dual-direction SCR for high-voltage ESD protection in 0.18-µm BCD technology. IEEE J Emerg Sel Top Power Electron, 9(1):994–1001. https://doi.org/10.1109/JESTPE.2019.2953469
Wang Y, Jin XL, Peng Y, et al., 2020. Design and optimization of high-failure-current dual-direction SCR for industrial-level ESD protection. IEEE Trans Power Electron, 35(5):4669–4677. https://doi.org/10.1109/TPEL.2019.2944073
Yen SS, Cheng CH, Fan CC, et al., 2017. Investigation of double-snapback characteristic in resistor-triggered SCRs stacking structure. IEEE Trans Electron Dev, 64(10): 4200–4205. https://doi.org/10.1109/TED.2017.2736511
Zhan CR, Gill C, Hong C, et al., 2013. High-voltage asymmetrical bi-directional device for system-level ESD protection of automotive applications on a BiCMOS technology. Proc 35th Electrical Overstress/Electrostatic Discharge Symp, p.1–8.
Zhang LZ, Wang Y, Wang YZ, et al., 2019. Improved turn-on behavior in a diode-triggered silicon-controlled rectifier for high-speed electrostatic discharge protection. Sci China Inform Sci, 62(6):62402. https://doi.org/10.1007/s11432-017-9427-1
Zheng YF, Jin XL, Wang Y, et al., 2019. Island diodes triggering SCR in waffle layout with high failure current for HV ESD protection. Sol-State Electron, 152:17–23. https://doi.org/10.1016/j.sse.2018.11.001
Author information
Authors and Affiliations
Contributions
Yang WANG and Xiangliang JIN designed the research. Jian YANG, Feng YAN, and Yujie LIU processed the data. Yang WANG drafted the paper. Xiangliang JIN helped organize the paper. Yan PENG, Jun LUO, and Jun YANG revised and finalized the paper.
Corresponding authors
Additional information
Compliance with ethics guidelines
Yang WANG, Xiangliang JIN, Jian YANG, Feng YAN, Yujie LIU, Yan PENG, Jun LUO, and Jun YANG declare that they have no conflict of interest.
Project supported by the National Natural Science Foundation of China (No. 61827812), the Huxiang High-Level Talents Gathering Project of Science and Technology Department of Hunan Province, China (No. 2019RS1037), the Innovation Project of Science and Technology Department of Hunan Province, China (Nos. 2020GK2018, 2019GK4016, and 2020RC1003), and the Postgraduate Scientific Research Innovation Project of Hunan Province, China (No. CX20200478)
Rights and permissions
About this article
Cite this article
Wang, Y., Jin, X., Yang, J. et al. Design and optimization of a gate-controlled dual direction electro-static discharge device for an industry-level fluorescent optical fiber temperature sensor. Front Inform Technol Electron Eng 23, 158–170 (2022). https://doi.org/10.1631/FITEE.2000504
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2000504