Abstract
A metasurface unit is designed operating at 2–20 GHz to enhance the gain and radiation performance of an antipodal Vivaldi antenna (AVA). The unit has a simple structure, stable ultra-wideband performance, high permittivity, and can independently modulate two polarization modes electromagnetic waves. We analyze the current distribution on the unit and extract equivalent characteristic parameters to verify the ability of independent modulation on two polarization modes electromagnetic waves. The designed metasurface unit is integrated into the aperture of the AVA and forms the metasurface lens (ML) for guiding the propagation of electromagnetic waves. Two types of ML are proposed and integrated into the AVA to design antennas Ant1 and Ant2. The modulation effect of the lens on the electromagnetic wave is analyzed from the perspective of electric field amplitude and phase, and the final design is obtained. From the optimized design results, the AVA and the proposed Ant2 are fabricated and measured, and the measurement results are in good agreement with the simulation ones. The impedance bandwidth measured by Ant2 basically covers the 2–18 GHz frequency band. Compared with the conventional AVA, the gain of the proposed Ant2 is increased by 0.6–3.7 dB, the sidelobe level is significantly reduced, and the directivity has also been clearly improved.
摘要
设计了工作频段为2~20 GHz的超表面单元以增强对跖Vivaldi天线的增益和辐射性能. 设计的超表面单元结构简单、 超宽带性能稳定、 介电常数高, 可独立调制两个极化电磁波. 分析了单元上的电流分布, 并提取等效电磁参数, 以验证超表面单元对x极化电磁波和y极化电磁波进行独立调制的能力. 设计的超表面单元被集成到对跖Vivaldi天线的口径中形成超表面透镜, 用于引导电磁波传播. 提出两种超表面透镜, 将它们分别集成到对跖Vivaldi天线中衍生出天线Ant1和Ant2, 并从电场幅度和相位角度分析透镜对电磁波的调制作用, 进而得到最终设计方案. 根据优化设计结果, 加工并测试对跖Vivaldi天线和提出的天线Ant2, 测试与仿真结果吻合良好. Ant2测得的阻抗带宽基本覆盖2~18 GHz频段, 与传统对跖Vivaldi天线相比, 提出的天线Ant2增益提高0.6~3.7 dB, 副瓣电平大大降低, 方向性也得到明显改善.
Similar content being viewed by others
References
Bourqui J, Okoniewski M, Fear EC, 2010. Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Trans Antenn Propag, 58(7): 2318–2326. https://doi.org/10.1109/TAP.2010.2048844
Chen L, Lei ZY, Yang R, et al., 2015. A broadband artificial material for gain enhancement of antipodal tapered slot antenna. IEEE Trans Antenn Propag, 63(1):395–400. https://doi.org/10.1109/TAP.2014.2365044
Gazit E, 1988. Improved design of the Vivaldi antenna. IEE Proc H Microw Antenn Propag, 135(2):89–92. https://doi.org/10.1049/ip-h-2.1988.0020
Gibson PJ, 1979. The Vivaldi aerial. Proc 9th European Microwave Conf, p.101–105. https://doi.org/10.1109/EUMA.1979.332681
Guo MJ, Qian RY, Zhang QS, et al., 2019. High-gain antipodal Vivaldi antenna with metamaterial covers. IET Microw Antenn Propag, 13(15):2654–2660. https://doi.org/10.1049/iet-map.2019.0449
Herzi R, Zairi H, Gharsallah A, 2015. Antipodal Vivaldi antenna array with high gain and reduced mutual coupling for UWB applications. 16th Int Conf on Sciences and Techniques of Automatic Control and Computer Engineering, p.789–792. https://doi.org/10.1109/STA.2015.7505195
Lewis L, Fassett M, Hunt J, 1974. A broadband stripline array element. Antennas and Propagation Society Int Symp, p.335–337. https://doi.org/10.1109/APS.1974.1147206
Liu W, Chen ZN, Qing XM, 2020. Dispersion-engineered wideband low-profile metasurface antennas. Front Inform Technol Electron Eng, 21(1):27–38. https://doi.org/10.1631/FITEE.1900473
Martín-Neira M, LeVine DM, Kerr Y, et al., 2014. Microwave interferometric radiometry in remote sensing: an invited historical review. Radio Sci, 49(6):415–449. https://doi.org/10.1002/2013RS005230
Moosazadeh M, Kharkovsky S, 2016. A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens. IEEE Antenn Wirel Propag Lett, 15:552–555. https://doi.org/10.1109/LAWP.2015.2457919
Nassar IT, Weller TM, 2015. A novel method for improving antipodal Vivaldi antenna performance. IEEE Trans Antenn Propag, 63(7):3321–3324. https://doi.org/10.1109/TAP.2015.2429749
Pan SP, Shen WT, Feng Y, et al., 2021. Miniaturization and performance enhancement of Vivaldi antenna based on ultra-wideband metasurface lens. AEU-Int J Electron Commun, 134:153703. https://doi.org/10.1016/j.aeue.2021.153703
Sang L, Wu SR, Liu G, et al., 2020. High-gain UWB Vivaldi antenna loaded with reconfigurable 3-D phase adjusting unit lens. IEEE Antenn Wirel Propag Lett, 19(2):322–326. https://doi.org/10.1109/LAWP.2019.2961393
Sun M, Chen ZN, Qing XM, 2013. Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial. IEEE Trans Antenn Propag, 61(4):1741–1746. https://doi.org/10.1109/TAP.2012.2237154
Yan JM, Hong H, Zhao H, et al., 2016. Through-wall multiple targets vital signs tracking based on VMD algorithm. Sensors, 16(8):1293. https://doi.org/10.1002/2013RS005230
Yesilyurt O, Turhan-Sayan G, 2020. Metasurface lens for ultra-wideband planar antenna. IEEE Trans Antenn Propag, 68(2):719–726. https://doi.org/10.1109/TAP.2019.2940462
Zhao HX, Li YF, Yin XX, 2017. Low cross-polarization Gaussian tapered post-wall slotline antenna for short pulse applications. Int J Antenn Propag, 2017:4852709. https://doi.org/10.1155/2017/4852709
Zhou B, Cui TJ, 2011. Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antenn Wirel Propag Lett, 10:326–329. https://doi.org/10.1109/LAWP.2011.2142170
Zhou B, Li H, Zou XY, et al., 2011a. Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials. Prog Electromagn Res, 120:235–247. https://doi.org/10.2528/PIER11072710
Zhou B, Yang Y, Li H, et al., 2011b. Beam-steering Vivaldi antenna based on partial Luneburg lens constructed with composite materials. J Appl Phys, 110(8):084908. https://doi.org/10.1063/1.3651376
Zhu SS, Liu HW, Wen P, et al., 2018. A miniaturized and high gain double-slot Vivaldi antenna using wideband index-near-zero metasurface. IEEE Access, 6:72015–72024. https://doi.org/10.1109/ACCESS.2018.2883097
Zhu SS, Liu HW, Wen P, 2019. A new method for achieving miniaturization and gain enhancement of Vivaldi antenna array based on anisotropic metasurface. IEEE Trans Antenn Propag, 67(3):1952–1956. https://doi.org/10.1109/TAP.2019.2891220
Zhuge XD, Yarovoy AG, 2011. A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection. IEEE Trans Geosci Remote Sens, 49(1): 509–518. https://doi.org/10.1109/TGRS.2010.2053038
Author information
Authors and Affiliations
Contributions
Shaopeng PAN designed the research. Lin QI and Pan CHEN measured the antennas. Yang FENG processed the data. Shaopeng PAN drafted the paper. Mingtuan LIN and Gaosheng LI revised and finalized the paper.
Corresponding author
Ethics declarations
Shaopeng PAN, Mingtuan LIN, Lin QI, Pan CHEN, Yang FENG, and Gaosheng LI declare that they have no conflict of interest.
Additional information
Project supported by the Open Fund for the Key Laboratory of Complex Systems Control and Intelligent Collaborative Technology, China (No. CSCIC191001)
Rights and permissions
About this article
Cite this article
Pan, S., Lin, M., Qi, L. et al. Performance enhancement for antipodal Vivaldi antenna modulated by a high-permittivity metasurface lens. Front Inform Technol Electron Eng 22, 1655–1665 (2021). https://doi.org/10.1631/FITEE.2100139
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2100139
Key words
- Antipodal Vivaldi antenna (AVA)
- Ultra-wideband
- High-permittivity
- Dual-polarization
- Metasurface lens (ML)