Abstract
The conversion from constant current (CC) to constant voltage (CV) is one of the key technologies of CC underwater observatory systems. A shunt regulator with high stability and high reliability is usually used. Applications, however, are limited by high heat dissipation and low efficiency. In this paper, with an improved shunt regulation method, a novel concept of stepless power reconfiguration (SPR) for the CC/CV module is proposed. In cases with stable or slowly changing load, two modes of CC/CV conversion are proposed to reduce unnecessary power loss of the shunt regulator while being able to retain any operator-preset power margin in the system: (1) the manual SPR (MSPR) method based on single-loop control method; (2) the automatic SPR (ASPR) method based on inner-outer loop control method. The efficiency of the system is analyzed. How to select some key parameters of the system is discussed. Experimental results show that MSPR and ASPR are both effective and practical methods to reduce heat dissipation and improve the efficiency of the CC/CV module, while the high stability of the shunt regulator remains.
摘要
恒流 (CC) 电能到恒压 (CV) 电能的转换是恒流输电水下观测网的关键技术之一. 该系统通常采用具有高稳定性和高可靠性的并联稳压器以稳定输出电压. 然而, 并联稳压方法存在高热损耗和低转换效率的缺点. 本文对传统并联稳压方法进行改进, 提出一种CC/CV转换模块的无级功率重构方法. 针对稳定负载或缓慢变化负载的应用场景, 介绍两种无级功率重构转换模式: (1) 基于单环控制的手动无级功率重构 (MSPR) ; (2) 基于内—外环控制的自动无级功率重构 (ASPR). 所述方法在保证系统留有预设功率裕度的同时, 可以尽可能减少并联稳压方法中不必要的能量损失. 分析了该方法的转换效率, 讨论了系统关键参数选择方法. 实验结果表明, MSPR和ASPR方法均保留了并联稳压方法的高稳定优点, 同时降低了CC/CV转换模块的热耗散, 提高了CC/CV转换效率.
Similar content being viewed by others
References
Asakawa K, Kojima J, Muramatsu J, et al., 2003. Novel current to current converter for mesh-like scientific underwater cable network—concept and preliminary test result. OCEANS, p.1868–1873. https://doi.org/10.1109/OCEANS.2003.178172
Asakawa K, Kojima J, Muramatsu J, et al., 2007. Current-to-current converter for scientific underwater cable networks. IEEE J Ocean Eng, 32(3):584–592. https://doi.org/10.1109/JOE.2007.905024
Asakawa K, Yokobiki T, Goto TN, et al., 2009. New scientific underwater cable system Tokai-SCANNER for underwater geophysical monitoring utilizing a decommissioned optical underwater telecommunication cable. IEEE J Ocean Eng, 34(4):539–547. https://doi.org/10.1109/JOE.2009.2026987
Butler R, 2003. The Hawaii-2 Observatory: observation of nanoearthquakes. Seismol Res Lett, 74(3):290–297. https://doi.org/10.1785/GSSRL.74.3.290
Chave AD, Waterworth G, Maffei AR, et al., 2004. Cabled ocean observatory systems. Mar Technol Soc J, 38(2): 30–43. https://doi.org/10.4031/002533204787522785
Chen YH, Yang CJ, Li DJ, et al., 2012. Design and application of a junction box for cabled ocean observatories. Mar Technol Soc J, 46(3):50–63. https://doi.org/10.4031/MTSJ.46.3.4
Chen YH, Howe BM, Yang CJ, 2015. Actively controllable switching for tree topology seafloor observation networks. IEEE J Ocean Eng, 40(4):993–1002. https://doi.org/10.1109/JOE.2014.2362830
Chen YH, Zang YJ, Yao JJ, et al., 2019a. Optimal communication frequency for switching cabled ocean networks with commands carried over the power line. Front Inform Technol Electron Eng, 20(10):1331–1343. https://doi.org/10.1631/FITEE.1900125
Chen YH, Xiao S, Li DJ, 2019b. Power system design for constant current subsea observatories. Front Inform Technol Electron Eng, 20(11):1505–1515. https://doi.org/10.1631/FITEE.1800362
Chen YH, Zang YJ, Yang CJ, et al., 2020. Reconfigurable power converter for constant current underwater observatory. Electronics, 9(2):307. https://doi.org/10.3390/ELECTRONICS9020307
Choi JK, Nishida S, Yokobiki T, et al., 2013. Development of an automated cable-laying system for DONET construction. IEEE Int Underwater Technology Symp, p.1–6. https://doi.org/10.1109/UT.2013.6519810
Harris DW, Duennebier FK, 2002. Powering cabled ocean-bottom observatories. IEEE J Ocean Eng, 27(2):202–211. https://doi.org/10.1109/JOE.2002.1002474
Howe BM, Kirkham H, Vorpérian V, 2002. Power system considerations for undersea observatories. IEEE J Ocean Eng, 27(2):267–274. https://doi.org/10.1109/JOE.2002.1002481
Howe BM, Lukas R, Duennebier F, et al., 2011. ALOHA Cabled Observatory installation. OCEANS, p.1–11. https://doi.org/10.23919/OCEANS.2011.6107301
Howe BM, Duennebier FK, Lukas R, 2015. The ALOHA Cabled Observatory. In: Favali P, Beranzoli L, de Santis A (Eds.), Seafloor Observatories. Springer, Berlin, Germany, p.439–463. https://doi.org/10.1007/978-3-642-11374-1_17
Kanazawa T, Shinohara M, Sakai S, et al., 2008. A new compact ocean bottom cabled seismometers system for spatially dense observation on sea floor. OCEANS, p.1–5. https://doi.org/10.1109/OCEANS.2008.5152062
Kanazawa T, Shinohara M, Sakai S, et al., 2011. New innovative ocean bottom cabled seismometer system and observation in the Sea of Japan. IEEE Symp on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, p.1–3. https://doi.org/10.1109/UT.2011.5774112
Kawaguchi K, Kaneda Y, Araki E, 2008. The DONET: a real-time seafloor research infrastructure for the precise earthquake and tsunami monitoring. OCEANS MTS/IEEE Kobe Techno-Ocean, p.1–4. https://doi.org/10.1109/OCEANSKOBE.2008.4530918
Kawaguchi K, Araki E, Kogure Y, et al., 2013. Development of DONET2—off Kii chanel observatory network. IEEE Int Underwater Technology Symp, p.1–5. https://doi.org/10.1109/UT.2013.6519844
Khan AB, Pham VL, Nguyen TT, et al., 2016. Multistage constant-current charging method for Li-ion batteries. IEEE Transportation Electrification Conf and Expo, p.381–385. https://doi.org/10.1109/ITEC-AP.2016.7512982
Kojima J, Howe BM, Asakawa K, et al., 2005. Power systems for ocean regional cabled observatories. OCEANS, p.2176–2181. https://doi.org/10.1109/OCEANS.2004.1406484
Lin R, Li DJ, Zhang T, et al., 2019. A non-contact docking system for charging and recovering autonomous underwater vehicle. J Mar Sci Technol, 24(3):902–916. https://doi.org/10.1007/s00773-018-0595-6.
Petitt RA, Harris DW, Wooding B, et al., 2002. The Hawaii-2 Observatory. IEEE J Ocean Eng, 27(2):245–253. https://doi.org/10.1109/JOE.2002.1002479
Qu FZ, Wang ZD, Song H, et al., 2015. A study on a cabled seafloor observatory. IEEE Intell Syst, 30(1):66–69. https://doi.org/10.1109/MIS.2015.9
Saha T, Wang HJ, Riar B, et al., 2018a. Analysis and design of a parallel resonant converter for constant current input to constant voltage output DC-DC converter over wide load range. Int Power Electronics Conf, p.4074–4079. https://doi.org/10.23919/IPEC.2018.8507404
Saha T, Bagchi AC, Wang HJ, et al., 2018b. Analysis and design of wide range output voltage regulated power supply for underwater constant input current DC distribution system. IEEE 19th Workshop on Control and Modeling for Power Electronics, p.1–7. https://doi.org/10.1109/COMPEL.2018.8459939
Saha T, Bagchi AC, Zane RA, 2021. Analysis and design of an LCL-T resonant DC-DC converter for underwater power supply. IEEE Trans Power Electron, 36(6):6725–6737. https://doi.org/10.1109/TPEL.2020.3034298
Wang HJ, Saha T, Zane R, 2017. Impedance-based stability analysis and design considerations for DC current distribution with long transmission cable. IEEE 18th Workshop on Control and Modeling for Power Electronics, p.1–8. https://doi.org/10.1109/COMPEL.2017.8013355
Wang HJ, Saha T, Riar B, et al., 2019. Design considerations for current-regulated series-resonant converters with a constant input current. IEEE Trans Power Electron, 34(1): 141–150. https://doi.org/10.1109/TPEL.2018.2819887
Wang J, Li DJ, Yang CJ, et al., 2015. Developing a power monitoring and protection system for the junction boxes of an experimental seafloor observatory network. Front Inform Technol Electron Eng, 16(12):1034–1045. https://doi.org/10.1631/FITEE.1500099
Yong SO, Rahim NA, 2013. Development of on-off duty cycle control with zero computational algorithm for CC-CV Li ion battery charger. IEEE Conf on Clean Energy and Technology, p.422–426. https://doi.org/10.1109/CEAT.2013.6775668
Zang YJ, Chen YH, Yang CJ, et al., 2020. A new approach for analyzing the effect of non-ideal power supply on a constant current underwater cabled system. Front Inform Technol Electron Eng, 21(4):604–614. https://doi.org/10.1631/FITEE.1800737
Zapolskiy SA, Osipov AV, Zhuravlev IM, et al., 2018. Single-cycle LCL-T resonant converter for solar battery. XIV Int Scientific-Technical Conf on Actual Problems of Electronics Instrument Engineering, p.90–93. https://doi.org/10.1109/APEIE.2018.8545079
Zhang ZF, Chen YH, Li DJ, et al., 2018. Use of a coded voltage signal for cable switching and fault isolation in cabled seafloor observatories. Front Inform Technol Electron Eng, 19(11):1328–1339. https://doi.org/10.1631/FITEE.1601843
Author information
Authors and Affiliations
Contributions
Yujia ZANG and Yanhu CHEN designed the research. Haoyu ZHANG and Zhiyong DUAN processed the data. Yujia ZANG and Gul MUHAMMAD drafted the paper. Canjun YANG helped organize the paper. Yanhu CHEN and Canjun YANG revised and finalized the paper.
Corresponding author
Ethics declarations
Yujia ZANG, Yanhu CHEN, Canjun YANG, Haoyu ZHANG, Zhiyong DUAN, and Gul MUHAMMAD declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (No. 51979246) and the Ningbo Science and Technology Innovation 2025 Major Special Project, China (No. 2020Z075)
Rights and permissions
About this article
Cite this article
Zang, Y., Chen, Y., Yang, C. et al. A stepless-power-reconfigurable converter for a constant current underwater observatory. Front Inform Technol Electron Eng 22, 1625–1640 (2021). https://doi.org/10.1631/FITEE.2100259
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2100259
Key words
- Constant current to constant voltage (CC/CV) conversion
- Shunt regulator
- Stepless power configuration
- Underwater observatory