Abstract
Designing logic circuits using complementary metal-oxide-semiconductor (CMOS) technology at the nano scale has been faced with various challenges recently. Undesirable leakage currents, the short-effect channel, and high energy dissipation are some of the concerns. Quantum-dot cellular automata (QCA) represent an appropriate alternative for possible CMOS replacement in the future because it consumes an insignificant amount of energy compared to the standard CMOS. The key point of designing arithmetic circuits is based on the structure of a 1-bit full adder. A low-complexity full adder block is beneficial for developing various intricate structures. This paper represents scalable 1-bit QCA full adder structures based on cell interaction. Our proposed full adders encompass preference aspects of QCA design, such as a low number of cells used, low latency, and small area occupation. Also, the proposed structures have been expanded to larger circuits, including a 4-bit ripple carry adder (RCA), a 4-bit ripple borrow subtractor (RBS), an add/sub circuit, and a 2-bit array multiplier. All designs were simulated and verified using QCA Designer-E version 2.2. This tool can estimate the energy dissipation as well as evaluate the performance of the circuits. Simulation results showed that the proposed designs are efficient in complexity, area, latency, cost, and energy dissipation.
摘要
近年来, 在纳米尺度上使用互补金属氧化物半导体 (CMOS) 技术设计逻辑电路面临着各种挑战. 漏电流、 短效应沟道和高能量耗散是一些亟待解决的问题. 量子点元胞自动机 (QCA) 代表了未来可能替代CMOS的一种合适选择, 因为与标准CMOS相比, 它消耗的能量微不足道. 设计算术电路关键是基于1位全加器的结构. 低复杂度的全加器模块有利于开发各种复杂结构. 本文介绍了基于单元交互的可扩展1位QCA全加器结构. 我们提出的全加器包含QCA设计偏好, 例如使用的单元数量少、 延迟低和占用面积小. 此外, 所提结构已扩展到更大的电路, 包括4位行波进位加法器 (RCA)、 4位行波借位减法器 (RBS)、 加/减电路和2位阵列乘法器. 所有设计均使用 QCA Designer-E 2.2版软件进行仿真和验证. 该工具可以估计能量消耗以及评估电路的性能. 仿真结果表明, 所提设计在复杂度、 面积、 延迟、 成本和能量消耗方面都是有效的.
Similar content being viewed by others
References
Abdullah-Al-Shafi, Bahar AN, 2018. An architecture of 2-dimensional 4-dot 2-electron QCA full adder and subtracter with energy dissipation study. Act Pass Electron Compon, 2018:5062960. https://doi.org/10.1155/2018/5062960
Adelnia Y, Rezai A, 2019. A novel adder circuit design in quantum-dot cellular automata technology. Int J Theor Phys, 58(1):184–200. https://doi.org/10.1007/s10773-018-3922-0
Ahmadpour SS, Mosleh M, Heikalabad SR, 2018. A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Phys B Condens Matter, 550:383–392. https://doi.org/10.1016/j.physb.2018.09.029
Arani IE, Rezai A, 2018. Novel circuit design of serial-parallel multiplier in quantum-dot cellular automata technology. J Comput Electron, 17(4):1771–1779. https://doi.org/10.1007/s10825-018-1220-y
Babaie S, Sadoghifar A, Bahar AN, 2019. Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans Circ Syst II Expr Briefs, 66(6):963–967. https://doi.org/10.1109/TCSII.2018.2873797
Balali M, Rezai A, 2018. Design of low-complexity and highspeed coplanar four-bit ripple carry adder in QCA technology. Int J Theor Phys, 57(7):1948–1960. https://doi.org/10.1007/s10773-018-3720-8
Blair E, 2019. Electric-field inputs for molecular quantum-dot cellular automata circuits. IEEE Trans Nanotechnol, 18: 453–460. https://doi.org/10.1109/TNANO.2019.2910823
Cesar TF, Vieira LFM, Vieira MAM, et al., 2020. Cellular automata-based byte error correction in QCA. Nano Commun Netw, 23:100278. https://doi.org/10.1016/j.nancom.2019.100278
Das JC, De D, 2017. Reversible binary subtractor design using quantum dot-cellular automata. Front Inform Technol Electron Eng, 18(9):1416–1429. https://doi.org/10.1631/FITEE.1600999
Debnath B, Das JC, De D, 2019. Nanoscale cryptographic architecture design using quantum-dot cellular automata. Front Inform Technol Electron Eng, 20(11):1578–1586. https://doi.org/10.1631/FITEE.1800458
Erniyazov S, Jeon JC, 2019. Carry save adder and carry look ahead adder using inverter chain based coplanar QCA full adder for low energy dissipation. Microelectron Eng, 211:37–43. https://doi.org/10.1016/j.mee.2019.03.015
Gassoumi I, Touil L, Mtibaa A, 2021. An efficient design of QCA full-adder-subtractor with low power dissipation. Electr Comput Eng, 2021:8856399. https://doi.org/10.1155/2021/8856399
Hasani B, Navimipour NJ, 2021. A new design of a carry-save adder based on quantum-dot cellular automata. Iran J Sci Technol Trans Electr Eng, 45(3):993–999. https://doi.org/10.1007/s40998-020-00395-5
Heikalabad SR, Asfestani MN, Hosseinzadeh M, 2018. A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. Supercomput, 74(5):1994–2005. https://doi.org/10.1007/s11227-017-2206-4
Heikalabad SR, Salimzadeh F, Barughi YZ, 2020. A unique three-layer full adder in quantum-dot cellular automata. Comput Electr Eng, 86:106735. https://doi.org/10.1016/j.compeleceng.2020.106735
Joy UB, Chakraborty S, Tasnim S, et al., 2021. Design of an area efficient quantum dot cellular automata based full adder cell having low latency. 2nd Int Conf on Robotics, Electrical and Signal Processing Techniques, p.689–693. https://doi.org/10.1109/ICREST51555.2021.9331135
Lent CS, Tougaw PD, Porod W, et al., 1993. Quantum cellular automata. Nanotechnology, 4(1):49. https://doi.org/10.1088/0957-4484/4/1/004
Liu WQ, Lu L, O’Neill M, et al., 2014. A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans Nanotechnol, 13(3):476–487. https://doi.org/10.1109/TNANO.2014.2306754
Maharaj J, Muthurathinam S, 2020. Effective RCA design using quantum dot cellular automata. Microprocess Microsyst, 73:102964. https://doi.org/10.1016/j.micpro.2019.102964
Majeed AH, Zainal MSB, Alkaldy E, et al., 2020. Full adder circuit design with novel lower complexity XOR gate in QCA technology. Trans Electr Electron Mater, 21(2):198–207. https://doi.org/10.1007/s42341-019-00166-y
Mohammadi M, Mohammadi M, Gorgin S, 2016. An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron, 50:35–43. https://doi.org/10.1016/j.mejo.2016.02.004
Mosleh M, 2019. A novel full adder/subtractor in quantum-dot cellular automata. Int J Theor Phys, 58(1):221–246. https://doi.org/10.1007/s10773-018-3925-x
Navidi A, Sabbaghi-Nadooshan R, Dousti M, 2021. A creative concept for designing and simulating quaternary logic gates in quantum-dot cellular automata. Front Inform Technol Electron Eng, 22(11):1541–1550. https://doi.org/10.1631/FITEE.2000590
Safoev N, Jeon JC, 2020. Design of high-performance QCA incrementer/decrementer circuit based on adder/subtractor methodology. Microprocess Microsyst, 72:102927. https://doi.org/10.1016/j.micpro.2019.102927
Salimzadeh F, Heikalabad SR, 2021. A full adder structure with a unique XNOR gate based on Coulomb interaction in QCA nanotechnology. Opt Quant Electron, 53(8):479. https://doi.org/10.1007/s11082-021-03127-z
Sasamal TN, Singh AK, Ghanekar U, 2018. Efficient design of coplanar ripple carry adder in QCA. IET Circ Dev Syst, 12(5):594–605. https://doi.org/10.1049/iet-cds.2018.0020
Seyedi S, Navimipour NJ, 2018. An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik, 158:243–256. https://doi.org/10.1016/j.ijleo.2017.12.062
Singh G, Raj B, Sarin RK, 2018. Fault-tolerant design and analysis of QCA-based circuits. IET Circ Dev Syst, 12(5): 638–644. https://doi.org/10.1049/iet-cds.2017.0505
Song ZX, Xie GJ, Cheng X, et al., 2020. An ultra-low cost multilayer RAM in quantum-dot cellular automata. IEEE Trans Circ Syst II Expr Briefs, 67(12):3397–3401. https://doi.org/10.1109/TCSII.2020.2988046
Walus K, Dysart TJ, Jullien GA, et al., 2004. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol, 3(1):26–31. https://doi.org/10.1109/TNANO.2003.820815
Wang L, Xie GJ, 2019. A power-efficient single layer full adder design in field-coupled QCA nanocomputing. Int J Theor Phys, 58(7):2303–2319. https://doi.org/10.1007/s10773-019-04121-8
Wang L, Xie GJ, 2020. A novel XOR/XNOR structure for modular design of QCA circuits. IEEE Trans Circ Syst II Expr Briefs, 67(12):3327–3331. https://doi.org/10.1109/TCSII.2020.2989496
Xiao LR, Chen XX, Ying SY, 2012. Design of dual-edge triggered flip-flops based on quantum-dot cellular automata. J Zhejiang Univ-Sci C (Comput & Electron), 13(5):385–392. https://doi.org/10.1631/jzus.C1100287
Author information
Authors and Affiliations
Contributions
Hamideh KHAJEHNASIR-JAHROMI and Pooya TORKZADEH designed the research. Hamideh KHAJEHNASIR-JAHROMI processed the data and drafted the paper. Pooya TORKZADEH helped organize the paper. Pooya TORKZADEH and Massoud DOUSTI revised and finalized the paper.
Corresponding author
Ethics declarations
Hamideh KHAJEHNASIR-JAHROMI, Pooya TORKZADEH, and Massoud DOUSTI declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Khajehnasir-Jahromi, H., Torkzadeh, P. & Dousti, M. Introducing scalable 1-bit full adders for designing quantum-dot cellular automata arithmetic circuits. Front Inform Technol Electron Eng 23, 1264–1276 (2022). https://doi.org/10.1631/FITEE.2100287
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2100287