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Training Time Minimization for Federated Edge
Learning with Optimized Gradient Quantization and
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Abstract—Training a machine learning model with federated
edge learning (FEEL) is typically time-consuming due to the
constrained computation power of edge devices and limited
wireless resources in edge networks. In this paper, the training
time minimization problem is investigated in a quantized FEEL
system, where the heterogeneous edge devices send quantized
gradients to the edge server via orthogonal channels. In particu-
lar, a stochastic quantization scheme is adopted for compression
of uploaded gradients, which can reduce the burden of per-round
communication but may come at the cost of increasing number of
communication rounds. The training time is modeled by taking
into account the communication time, computation time and
the number of communication rounds. Based on the proposed
training time model, the intrinsic trade-off between the number
of communication rounds and per-round latency is characterized.
Specifically, we analyze the convergence behavior of the quantized
FEEL in terms of the optimality gap. Further, a joint data-
and-model-driven fitting method is proposed to obtain the exact
optimality gap, based on which the closed-form expressions for
the number of communication rounds and the total training time
are obtained. Constrained by total bandwidth, the training time
minimization problem is formulated as a joint quantization level
and bandwidth allocation optimization problem. To this end, an
algorithm based on alternating optimization is proposed, which
alternatively solves the subproblem of quantization optimization
via successive convex approximation and the subproblem of
bandwidth allocation via bisection search. With different learning
tasks and models, the validation of our analysis and the near-
optimal performance of the proposed optimization algorithm are
demonstrated by the experimental results.

Index Terms—Federated edge learning, quantization optimiza-
tion, bandwith allocation, training time minimization

I. INTRODUCTION

The evolution of wireless networks from 1G to 5G-
Advanced has witnessed a paradigm shift from connecting
people targeting human-type communications towards con-
necting intelligence targeting machine-type communications
to attain the vision of artificial intelligence of things (AIoT).
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This has driven the rapid development of an emerging area
called edge intelligence, sitting at the intersection of the two
disciplines, namely artificial intelligence (AI) and wireless
communications [1], [2]. In edge intelligence, AI technologies
are pushed towards the network edge so that the edge servers
can quickly access real-time data generated by edge devices
for fast training and real-time inference [3]. A promising
framework for distributed edge learning, called federated edge
learning (FEEL), has recently been pushed into the spotlight,
which distributes the task of model training to edge devices
and keeps the data locally at the edge devices so as to
avoid data uploading and thus preserve user-privacy [4]–
[6]. Specifically, a typical training process of FEEL involves
multiple rounds of wireless communication between the edge
server and devices. In a particular round, the edge server
firstly broadcasts the global model under training to the edge
devices for local stochastic gradient decent (SGD) execution
using local data, and then the edge devices upload their local
models/gradients to the edge server for aggregation and global
model updating. After the convergence criterion is met, such
as attaining a desired level of accuracy or reaching a pre-
defined value of the loss, the entire training process will be
completed, and then on-device models can be tweaked for the
edge device’s personalization.

In edge networks, the computation resource of the edge de-
vices are constrained, and the wireless resource of the network,
e.g., frequency bandwidth, is also limited, so training a AI
model by FEEL is usually a time-consuming and expensive
task that can take anywhere from hours to weeks to complete
[7]. Hence, training time1 minimization of AI models is one
of the critical concerns in FEEL. The whole training process
of FEEL typically consists of multiple communication rounds,
and each lasts for a period of time consisting of computation
time and communication time, which we called per-round
latency. To reduce the total training time, we should not
only bring down the number of communication rounds, i.e.,
speed up the convergence rate of the learning algorithm, but
also shorten the per-round latency. Communication-efficient
transmission achieved through compression is usually included
into the FEEL pipeline to alleviate the transmission burden of
the edge devices, and thus reduce the per-round latency [10].
Two main lossy compression techniques, namely quantization
and sparsification, as well as combination of them, have been

1This is also called wall-clock time in some literature [8], [9]. In this
work, we use “total training time”, “training time”, and “wall-clock time”
interchangeably.
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considered in the literature [11]–[19]. Specifically, in the case
of quantization, the gradient vector entries are transmitted after
being quantized to finite bits, instead of the full floating-point
values [14]–[16]; sparsification reduces the communication
overhead by only sending significant entries of the gradient
vector [17]–[19]. Although the compressed transmission can
decrease the per-round latency, the lossy compression will
degrade the convergence speed of FEEL as well, which leads
to the increase in the number of communication rounds to
achieve a certain accuracy on a given task [13]. As a result,
the compression level balances the trade-off between the
number of communication rounds and per-round latency
in minimization of the total training time in FEEL. Besides, the
edge devices in the edge network are usually heterogeneous
such that some of edge devices with lower computation power
become laggards in the synchronous model/gradient aggrega-
tion due to their longer computation time, which increases the
per-round latency. It is necessary to consider the optimization
of wireless resources over different edge devices to reduce
the communication time of the lagging edge devices, and
compensate the longer computation time [20]–[22]. With the
goal of minimizing the total training time, we study the
following question: How to balance the trade-off between the
number of communication rounds and per-round latency via
joint quantization level and bandwidth allocation optimization
in the presence of device heterogeneity.

A. Related work

Recently, extensive efforts have been made to minimize
the total training time of FEEL by resource allocation or
gradient/model compression, which mainly fall into three
categories in terms of their objectives:

1) Minimization of the number of communication rounds:
This is equivalent to accelerating the convergence speed of
FEEL algorithms. In [4], the authors minimized the global loss
function by optimizing communication resource, e.g., power
and bandwidth, and computation resource under given per-
round latency constraint, and thus the convergence speed was
maximized. The works in [23] and [24] considered quantiza-
tion and bandwidth optimization to accelerate the algorithm
convergence speed of FEEL with device sampling in the
presence of outage probability. In [25], a stochastic gradient
quantization was adopted to compress the local gradient, and
the quantization levels of each devices were optimized to mini-
mize the optimality gap under multiple access channel capacity
constraints. These efforts have focused on speeding up the
convergence of FEEL algorithms, i.e., reducing the number of
communication rounds, without considering minimizing the
total training time, which is a more practical and important
issue in FEEL.

2) Minimization of per-round latency: The work in [20]
and [21] studied the trade-off between per-round latency and
energy consumption by introducing a weight factor, and these
two objectives tend to form a competitive interaction. In [5],
the authors analyzed the per-round latency of different multiple
access schemes in FEEL, i.e., the proposed broadband analog
aggregation (BAA) and the traditional OFDMA, and proved

that the proposed BAA can significantly reduce the per-round
latency compared to the traditional OFDMA. The resource
allocation in [20], [21], and [5] were considered over each
single communication round; nevertheless, FEEL is a long-
term process consisting of many communication rounds that
together determine the total training time.

3) Minimization of total training time: The work in [22]
minimized the total training time by optimizing communica-
tion and computation resource allocation; however, no com-
pression was considered in [22]. The authors in [7] minimized
the training time for a fixed communication rounds by solv-
ing a joint learning, wireless resource allocation, and device
selection problem. Some of other works didn’t minimize the
training time directly, but they considered to minimize the
loss function in a given training time. For example, the
work in [9] studied the communication trade-off balanced by
compression and local update steps in fixed training time, but
the communication resource allocation was not taken into con-
sideration. The authors in [26] adopted the idea of SIGNSGD
with majority vote [27] and optimized the power allocations
and CPU frequencies under the trade-off between the number
of communication rounds versus the outage probability per
communication round for fixed training time.

Despite the above research efforts, these prior works have
overlooked the inherent trade-off in minimizing the total train-
ing time of communication-efficient FEEL between the num-
ber of communication rounds and per-round latency, which is
balanced by the quantization level at the edge devices. More-
over, the communication resource allocation among different
edge devices and the compression setup for minimizing the
total training time of communication-efficient FEEL should
be jointly considered. This thus motivates the current work.

B. Our contribution

This paper studies a FEEL system consisting of multiple
edge devices with heterogeneous computational capabilities
and one edge server for coordinating the learning process.
We consider quantized FEEL where a stochastic quantization
scheme is adopted for updated gradients compression, which
can save per-round communication cost but may at a cost
of increased number of communication rounds. Thus, we
make a comprehensive analysis on the total training time by
taking into account the communication time, computation time
and the number of communication rounds, based on which
the intrinsic trade-off between the number of communication
rounds and per-round latency is characterized. Then, building
on the analytical results, a joint quantization and bandwidth
allocation optimization problem is formulated and solved. The
main contributions are elaborated as follows.
• Training time analysis in quantized FEEL: The chal-

lenge of analyzing the total training time mainly lies in
estimating the required communication rounds for model
convergence. To tackle the challenge, we analyze the
convergence behavior of quantized FEEL in terms of
the optimality gap and establish the expression of the
minimum number of communication rounds that achieves
a given optimality gap of the loss function. However, the
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derived results are generally too loose to be used for fur-
ther optimization. In order to yield an accurate estimate
on the required number of communication rounds, we
propose a joint data-and-model-driven fitting method to
further refine and tighten the derived result. Thanks to
the refinement, an accurate estimate of the total training
time can be attained and the trade-off between the number
of communication rounds and per-round latency can be
better characterized.

• Training time minimization via joint optimization of
quantization and bandwidth: Next, building on the
derived analytical results, we formulate the total training
time minimization problem by jointly optimizing the
quantization level and bandwidth allocation, subject to
a maximum bandwidth constraint in FEEL network. The
problem is non-convex, and thus challenging to solve.
To tackle the challenge, we adopt the alternating opti-
mization technique to decompose the problem into two
subproblems, and each optimizes one of the two control
variables with the other fixed. For the sub-problem of
bandwidth allocation with fixed quantization level, it can
be solved by bisection search efficiently; for the sub-
problem of quantization optimization with bandwidth
allocation fixed, a algorithm based on successive convex
approximation is proposed.

• Performance evaluation: Finally, we conduct extensive
simulations to evaluate the performance of task-oriented
resource allocation for quantized FEEL by considering
the logistic regression (convex loss function) on a syn-
thetic dataset and a convolution neural network (non-
convex loss function) on CIFAR-10 dataset. It is shown
that the proposed joint data-and-model-driven fitting
method can fit the curve of actual optimality gap well. In
addition, it is shown that the optimal quantization level
found by solving the formulated optimization problem
matches well with the simulation result. The benefits of
optimizing the bandwidth allocation in coping with the
devices heterogeneity are also demonstrated.

C. Organization and notations

Organization: The remainder of the paper is organized as
follows. Section II introduces the system model, including the
FEEL procedure, the quantization scheme, and the channel
models. Section III analyzes the convergence of quantized
FEEL,where a joint-data-and-model driven fitting approach is
proposed to attain a tight approximation of the total training
time. The optimization problem for minimizing the total
training time is formulated and then solved in Section IV.
Section V shows the experimental results using synthetic and
real dataset, followed by conclusion in Section VI.

Notations: R represents the set of real number. [K] denotes
set {1, 2, . . . ,K}. ∅ denotes the empty set. sgn(·) denotes the
sign of a scalar. wT is transpose of vector w. ∇f(w) denotes
the gradient of function f at point w. ‖w‖ denotes `2 norm of
vector w. dxe is the ceiling operator. x ∼ CN (0, σ2) denotes
zero-mean circularly symmetric complex Gaussian (CSCG)
random variable with variance of σ2.
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Fig. 1. Quantized federated edge learning system with K edge devices.

II. SYSTEM MODEL

A. Federated learning

We consider a quantized federated edge learning (FEEL)
system consisting of K edge devices and a single edge server,
as shown in Fig. 1. With the coordination of the edge server,
the edge devices collaboratively train a shared model, which
is represented by the parameter vector w ∈ Rd, with d
denoting the model size. The training process is to minimize
the following empirical loss function

F (w) =
1

K

K∑
k=1

Fk(w),

where Fk(w) denotes the local loss function at edge device k,
k ∈ [K]. Suppose device k holds the training data set Dk with
a uniform size of D, i.e., |Dk| = D. The local loss function
Fk(w) is given by

Fk(w) =
1

D

∑
(xi,yi)∈Dk

f(w;xi, yi) + λR(w), (1)

where f(w;xi, yi) denotes the sample-wise loss function
specified by the learning task and quantifies the training loss
of the model w on the training data x and its ground-true label
yi, and R(w) denotes certain strongly convex regularization
function whose strength is controlled by a hyperparameter
λ ≥ 0.

In FEEL, the training process is implemented iteratively in
a distributed manner using the federated stochastic gradient
decent (FedSGD) algorithm as elaborated in the following.
Consider a particular iteration or communication round n, all
the devices first download the current model w(n) from the
server. Then, each device computes a local stochastic gradient,
g

(n)
k , using a randomly chosen mini-batch of samples from

data sets Dk in a uniform manner. We denote the set of mini-
batch samples used by device k at round n as D̃(n)

k and the
size of each mini-batch as mb. Then we have

g
(n)
k =

1

mb

∑
(xi,yi)∈D̃(n)

k

∇f(w(n);xi, yi) + λ∇R(w(n)). (2)

Next, each device transmits a quantized version of its local
gradient, i.e., Q(g

(n)
k ), to the edge server. The quantization

scheme will be elaborated in the next subsection. Upon the
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reception, the edge server aggregates the local gradients and
updates the global model as follows:

w(n+1) = w(n) − ηn
K

K∑
k=1

Q(g
(n)
k ),

where ηn denotes the learning rate at round n. Then the
updated global model will be broadcast back to all edge
devices for initializing the next round training. The above
procedure continues until the convergence criterion is met.

B. Stochastic quantization

We consider a widely-used stochastic quantizer for local
gradient quantization [14]. For any arbitrary vector g ∈ Rd,
the stochastic quantizer Q(g) : Rd → Rd is defined element-
wisely as

Q (gi) = ‖g‖ · sgn (gi) · ξi (g, q) , ∀i ∈ [d] , (3)

where the output of quantizer Q(g) consists of three parts, i.e.,
the vector norm ‖g‖, the sign of each entry sgn(gi) with gi
denoting the i-th entry of g, and the quantization value of each
entry ξi(g, q). {ξi (g, q)} are independent random variables
defined as

ξi (g, q) =

{
(l + 1)/q, w.p. |gi|‖g‖q − l,
l/q, otherwise.

Here, q denotes the the number of quantization levels and
0 ≤ l < q is an integer such that gi

‖g‖ ∈
[
l
q ,

l+1
q

)
.

As proved in Lemma 3.1 from [14], the random quantizer
Q(g) is unbiased, i.e., E[Q(g)] = g for any given vector g.
Moreover, assuming that d ≥ q2, the quantizer has a bounded
variance, i.e., E[‖Q(g)− g‖]2 ≤

√
d
q ‖g‖

2. Note that we do
not claim that this quantization scheme is optimal in terms of
the communication efficiency. Rather, we adopt it as a simple
and general scheme that facilitates the subsequent analysis of
the trade-off between the number of communication rounds
and per-round communication latency, controlled by the quan-
tization level.

C. Wireless transmission model

In the quantized FEEL system, each edge device connects
to the edge server via a shared wireless medium. We assume
that the spectrum is divided into distinct and non-overlapping
flat fading channels with different bandwidth, so that the
edge devices share the spectrum through frequency division
multiple access to avoid interferences with each other. In
general, modern neural network models are of high dimension
with d in the order of 106 ∼ 109. Hence, it usually takes
much longer than the coherence period to transmit a complete
model. For example, a single LTE frame of 5 MHz bandwidth
and 10 ms duration can carry only 6000 complex symbols
[12]. To transmit a moderate neural network model with 106

parameters encoded by 32-bit floating-point values, it will
approximately take 6 seconds, which is much longer than
the frame length, i.e., 10 ms. Moreover, in some Internet of
Things (IoT) networks, which are typically bandwidth and
power limited [28], it takes more time to transmit a machine
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Fig. 2. Computation time and communication time in one communication
round of quantized FEEL.

learning model. Hence, it is reasonable to model the wireless
uplink channels as independent and identical distributed (i.i.d.)
fast Rayleigh fading channel in the course of training, i.e.,
the channel coefficients remain constant over each coherence
period and vary in an i.i.d. across different coherence periods,
and the codeword or frame will span multiple coherence
periods [29]. Specifically, the channel propagation coefficient
between edge server and device k is generally modeled as
hk =

√
φkhk; here, φk describes the large-scale propagation

effects, including path loss and shadowing, and hk denotes
small-scale fading modeled as i.i.d. CSCG random variables
with zero mean and unit variance, i.e., hk ∼ CN (0, 1). The
large-scale propagation coefficient φk remains unchanged in
a whole time frame, while the small-scale fading hk varies
from coherence block to another in a time frame. Moreover,
we assume that the channel coefficients are only known at the
edge server, which can be obtained by channel estimation at
the server.

In this situation, the ergodic capacity can be assigned to
the fast fading channel, which can be achieved in practice by
interleaving technique [29]. The ergodic capacity of device k
is given by

Rk = Ehk
[
bk log2

(
1 +

pk|hk|2

bkN0

)]
, (4)

where bk denotes the frequency bandwidth allocated for device
k with

∑K
k=1 bk = B0; pk denotes the transmit power at device

k; N0 denotes noise power spectral density; the expectation is
taken over the channel distribution.

III. TRAINING TIME ANALYSIS

The training time of each device for one communication
round comprises computation time T comp

k and communication
time T comm

k , as illustrated in Fig. 2. Since the server broadcasts
the same global model to all the devices using the entire
frequency band, the downlink delay due to global model
broadcasting is ignorable compared with the uplink delay due
to updates uploading from many devices to the server. Assume
that the delay requirement for running one round training is
Td, i.e., T comp

k + T comm
k ≤ Td. We define Nε as the minimum

number of communication rounds when ε-optimality gap is
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achieved, i.e., F (w(Nε))−F (w∗) ≤ ε, where w∗ denotes the
optimal model as w∗ = arg min

w
F (w). The training process

stops when ε-optimality gap is achieved. Then, the requirement
of total training time over Nε rounds is given by

T = Nε · Td. (5)

In the following, we give the expression of per-round training
time Td, and obtain the minimum number of communication
rounds Nε by analyzing the convergence of FEEL, which
paves the way for minimizing the total training time defined
in (5) in next section.

A. Computation time

Let ν denote the number of processing cycles for one
particular edge device to execute one batch of samples, and
fk denote the CPU frequency of device k. Accordingly, the
computation time for running one-round SGD at device k is
given by [30]

T comp
k =

ν

fk
.

B. Communication time

Let S denote the number of bits for transmission after
stochastic quantization. For quantizing any element gi in
gradient vector g ∈ Rd as noted from (2), we need to encode
the vector norm ‖g‖, the element-wise sign sgn(gi), and the
normalized quantization value ξi(g, q) into bits. Particularly,
it takes one bit to encode each of the sgn(gi). Assum-
ing that ξi(g, q)’s have uniform distribution2 with support
{0, 1/q, 2/q, . . . , 1}, it takes at least log2(1+q) bits to encode
each ξi(g, q) [31]. Since each vector containing d entries, it
takes in total (1 + log2 q)d bits to encode these two parts.
By contrast, the overhead in encoding the single scalar vector
norm ‖g‖ is typically negligible for large models of size d
[32]. To facilitate the subsequent analysis, for large d we
approximate S via

S = (1 + log2(q + 1))d. (6)

The communication delay in one round is

T comm
k =

S

Rk
, (7)

where Rk is the ergodic capacity defined in (4).

C. Minimum number of communication rounds

In this subsection, we derive Nε by analyzing the conver-
gence of quantized FEEL. To this end, we make the following
assumptions on the local loss functions {Fk(w)}.

Assumption 1 (Smoothness). The local loss functions
{Fk(w)} are all L-smooth: for all wi and wj , Fk(wi) ≤
Fk(wj) + (wi −wj)

T ∇Fk(wj) + L
2 ‖wi −wj‖2, ∀k.

2In practice, ξi(g, q)’s can have non-uniform probability distribution.
There exit more efficient coding methods coping with such non-uniform
distribution as reported in [14], which are nevertheless much more complicated
for analysis and optimization. In this work, we only consider the uniform
distribution and leave those complicated ones for future work.

Assumption 2 (Strongly convexity). The local loss functions
{Fk(w)} are all µ-strongly convex: for all wi and wj ,
Fk(wi) ≥ Fk(wj) + (wi −wj) + (wi −wj)

T ∇Fk(wj) +
µ
2 ‖wi −wj‖2, ∀k.

Assumption 3 (First and second moments of local gradients).
The mean and variance of stochastic gradients g

(n)
k of local

loss functions Fk(w), for all n ∈ [N ] and ∀k, satisfy that

(Unbiased) E[g
(n)
k ] = ∇Fk(w(n)),

(Bounded variance) E[‖g(n)
k −∇Fk(w(n))‖2] ≤ δ2

k.

Assumptions 1 and 2 on local loss functions are standard,
and they can be satisfied by many typical learning models,
such as logistic regression, linear regression, and softmax
classifier. Assumption 3 is general enough to cope with both
i.i.d. and non-i.i.d. data distribution across edge devices, which
follows the work in [33], [24], and [34]. Under Assumptions
1-3, the convergence rate of quantized FEEL is established in
the following theorem.

Theorem 1. Consider a quantized FEEL system with fixed
quantization level q ≥ 2. The optimality gap of the loss
function after N communication rounds is upper bounded by

E
[
F (w(N))

]
− F (w∗)

≤ ακ

N + 2ακ− 1

(
L
∥∥∥w(0) −w∗

∥∥∥2

+
2Γ

µ

)
,

where α =
√
d

qK + 1, κ = L
µ , Fδ = F (w∗)− 1

K

∑K
k=1 F

∗
k with

F ∗k = min
w

Fk(w), Γ = 2LFδ + 1
K

∑K
k=1 δ

2
k, and w(0) is the

initial point of the training process. The learning rate is set to
be a diminishing one, i.e., ηn = 2

µ(n+2ακ−1) .

Proof. See Appendix A.

Remark 1 (Convergence rate). Theorem 1 quantizes the
impact of gradient quantization on the convergence rate of
the FEEL, which is captured by the term α =

√
d

qK + 1. An
aggressive quantization scheme, e.g., with small q, will lead
to a enlarged optimality gap, and thus needs more rounds to
converge. Nevertheless, the quantized FEEL can still achieve
the asymptotic convergence rate ofO( 1

N ) as federated learning
without quantization [33].

Remark 2 (Impact of data heterogeneity). The term Fδ mea-
sures the discrepancy between the minimum global loss and
the average of the minimum local losses, which can be used for
quantifying the heterogeneity level of data distribution among
different devices [33]. As observed, if the data distribution is
i.i.d., i.e., the data at different devices is sampled from a same
distribution, then Fδ goes to zero as the number of samples
grows; otherwise, Fδ is a non-zero constant depending on
the skewness of data distribution. Therefore, Theorem 1 also
offers quantitative insights on how data heterogeneity affects
the convergence of quantized FEEL.

Although we can readily establish a bound on Nε based
on Theorem 1 and apply this bound for subsequent resource
optimization as did in prior work, e.g., [35] and [34], such
an approach has two key drawbacks. Firstly, the gap between
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the derived bound and its true value could be large as several
relaxations are made in deriving the bound. Thus, ignoring the
gap may lead to highly suboptimal solution in the subsequent
resource optimization. Secondly, even we adopt the upper
bound and ignore the effects of the gap, it is still difficult to get
the exact value of upper bound, since it involves calculating
a bunch of data-related and model-related parameters, such as
µ, L, Fδ , w∗, and Γ.

To address the above issues, we propose a joint data-and-
model-driven fitting approach, which uses a small amount of
pre-training rounds to yield a good estimate of the optimality
gap based on the bound derived in Theorem 1. To this end,
we first denote the upper bound function derived in Theorem
1 as follows,

Û(N) =
ακ
(
L ‖w0 −w∗‖2 + 2Γ

µ

)
N + 2ακ− 1

.

Before we derive the tight estimate of optimality gap, it is
first observed that the upper bound function Û(N) satisfies
the following properties:

1) Û(N) is a decreasing function of N , and it converges
to zero in a rate of O( 1

N );
2) Û(N) has a fractional structure, where the numerator

and denominator are both linear increasing functions of
α.

We assume that the ground-true optimality gap follows the
same properties as its upper bound Û(N). Based on the above
assumption, the exact optimality gap can be well estimated by
the following function:

E
[
F (w(N))

]
− F (w∗) =

αA+D

n+ αB + C
, U(N), (8)

where A > 0, B > 0, C ≥ 0, and D ≥ 0 are tuning parameters
to be fitted, which are implicitly related to the parameters, such
as µ, L, Fδ , and Γ. It can be seen that U(N) generalizes all
the functions that satisfy the two properties mentioned above.

Next, we apply a joint data-and-model-driven fitting method
to fit the values of the tuning parameters as follows. Firstly, we
randomly choose two quantization levels, say q1 and q2, and
run the quantized FEEL with q1 and q2, respectively, from
an initial model w0. Then we sample the value of loss at
each round until the number of communication rounds reaches
a pre-defined value Ñ . The corresponding loss values are
denoted as Fi,n (i ∈ {1, 2}, n ∈ [1, Ñ ]) for round n when
the quantization level is qi. According to (8), we have that

Fi,n − Z ≈
Xi

n+ Yi
, ∀i ∈ {1, 2}, n ∈ [1, Ñ ], (9)

where αi =
√
d

qiK
+ 1, Z = F (w∗), and{

Xi = αiA+D,

Yi = αiB + C.

(10)
(11)

Then we aim to find proper values of Xi, Yi, and Z to fit
(9) well. The method we choose is to solve the following
nonlinear regression problem:

min
Xi,Yi,Z

2∑
i=1

Ñ∑
n=1

(
(Fi,n − Z)(n+ Yi)−Xi

)2
. (12)

For any fixed Z, this problem can be divided into two linear
regression problems, i.e.,

min
Xi,Yi

Ñ∑
n=1

(
(Fi,n − Z)(n+ Yi)−Xi

)2
, (13)

and the optimal {Xi} and {Yi} can be given by

Xi =

∑Ñ
n=1 χi,n

∑Ñ
n=1 ψ

2
i,n −

∑Ñ
n=1 χi,nψi,n

∑Ñ
n=1 ψi,n

N
∑Ñ
n=1 ψ

2
i,n − (

∑Ñ
n=1 ψi,n)2

,

(14)
and

Yi =

∑Ñ
n=1 χi,n

∑Ñ
n=1 ψi,n −N

∑Ñ
n=1 χi,nψi,n

N
∑Ñ
n=1 ψ

2
i,n − (

∑Ñ
n=1 ψi,n)2

(15)

where χi,n = (Fi,n − Z)n and ψi,n = Fi,n − Z. Hence,
the problem in (12) can be solved by one-dimensional search
of Z. Since the computations in (14) and (15) only involve
limited algebraic operations, the computation time for solving
the problem in (12) is negligible compared with the whole
training process. With {Xi} and {Yi} at hand, A, B, C, D
can be obtained from (10) and (11) as following:

A =
X1 −X2

α1 − α2
,

B =
Y1 − Y2

α1 − α2
,

C =
α2Y1 − α1Y2

α2 − α1
,

D =
α2X1 − α1X2

α2 − α1
.

Based on the estimated optimality gap in (8) with the
well-fitted parameters, we can derive Nε as in the following
proposition.

Proposition 1. In the quantized FEEL system, the minimum
communication rounds to achieve ε-optimality gap is given by

Nε =

⌈(√
d

qK
+ 1

)(
A

ε
−B

)
+
D

ε
− C

⌉
. (16)

Proof. By setting the fitted optimality gap in (8) less than ε,
i.e., U(N) ≤ ε, and respecting the fact that the minimum
communication rounds should be an integer, we obtain (16).

Remark 3 (Impact of quantization level and device number).
Proposition 1 unveils the impact of quantization level and the
number of participating devices on the minimum communica-
tion rounds as reflected by the term

√
d

qK + 1. On one hand,
Nε decreases with increasing number of the quantization level
q. This is due to the fact that increasing the quantization
levels leads to less quantization error, which speeds up the
convergence. On the other hand, we can observe that as the
number of devices goes to infinity, i.e., K → ∞, the impact
of quantization diminish since the quantization errors average
out thanks to the update aggregation mechanism. Moreover,
We can obtain that Nε =

⌈
A+D
ε −B − C

⌉
when q → ∞

or K → ∞. In other words,
⌈
A+D
ε −B − C

⌉
can be used
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to evaluate the minimum communication rounds under high-
resolution quantization or sufficient large number of devices,
and this value offers us a lower bound of the minimum
communication rounds under practical quantization levels and
number of devices.

IV. TRAINING TIME MINIMIZATION

In this section, we aim to jointly optimize the quantization
level and the bandwidth allocation by minimizing the training
time defined in (5) to achieve an ε-optimality gap.

A. Problem formulation

The training time minimization problem is mathematically
formulated by

(P1) min
q∈Z+,{bk},Td

Td ·Nε, (17)

s.t. T comp
k + T comm

k ≤ Td, ∀k ∈ [K], (17a)
K∑
k=1

bk = B0, (17b)

q ≥ 2, (17c)

where the objective function in (17) is the total training time
needed to achieve ε-optimality gap. Constraints in (17a) indi-
cate that the training time of each device per communication
round cannot exceed the delay requirement Td. Equation (17b)
constrains total bandwidth allocated to all the devices as B.
The constraint on the quantization level q is described by
(17c).

The objective function in (17) is complicated due to the
coupling of the control variables Td and q. Moreover, q can
only take values from positive integers. Therefore, Problem
(P1) is non-convex, and challenging to be solved optimally. To
yield a good solution to Problem (P1), we divide it into two
sub-problems. One is finding the optimal bandwidth allocation
{bk} and Td with fixed quantization level q; the other is
finding the optimal quantization level q with fixed bandwidth
allocation {bk} and Td. We will find that the first sub-problem
can be solved optimally and efficiently with unique solution,
and the second sub-problem can be transformed into a non-
convex problem that can be solved by the method of successive
convex approximation (SCA) [15]. Then, by alternatively
solving each sub-problem, we can obtain good sub-optimal
solutions to joint quantization level and bandwidth allocation
optimization.

Remark 4 (Tradeoff between minimum communication
rounds and per-round latency). As noted in Remark 3, the
minimum communication rounds Nε can be reduced by in-
creasing the quantization levels q, but at a cost of increased
per-round latency. Therefore, there exists a fundamental trade-
off between reducing the minimum communication rounds and
suppressing the per-round latency when minimizing the total
training time. The trade-off is manipulated by the setting of
quantization level q.

Remark 5 (Resource allocation over heterogeneous devices
in FEEL). The computation time of the devices varies due to

their heterogeneous computation capacity. To enforce the per-
round latency constraint, more frequency bandwidth should
be allocated to the devices with low computation power
so as to compensate the long computation time with short
communication time, and vice versa. Hence, the bandwidth
allocation among the devices should jointly account for the
channel condition and also the computation resources, which
is in sharp contrast to classic bandwidth allocation problem
account for only the channel condition, e.g., in [36].

B. Bandwidth allocation optimization

Since Nε is independent with {bk} and Td, Problem (17)
under fixed quantization level q reduces to

(P2) min
{bk},Td

Td (18)

s.t. T comp
k + T comm

k ≤ Td, ∀k ∈ [K], (18a)
K∑
k=1

bk = B0. (18b)

Since T comm
k = S

Rk
as defined in (7), constraint (18a) can

be rewritten as

T comp
k +

S

Rk
≤ Td, ∀k ∈ [K].

To get a closed-form expression of Rk, it can be rewritten as

Rk =

∫ +∞

0

bk log2

(
1 +

pkx

bkN0

)
f|hk|2(x)dx

=
bk

ln 2

pk
bkN0

∫ +∞

0

1− F|hk|2(x)

1 + pkx
bkN0

dx,

where f|hk|2(x) and F|hk|2(x) are the probability density func-
tion (PDF) and cumulative distribution function (CDF) of the
random variable |hk|2, respectively. It can be verified that |hk|2
follows an exponential distribution, i.e., |hk|2 ∼ Exp(1/φk).
Hence, we have F|hk|2(x) = 1 − e−x/φk . Then, Rk can be
calculated as

Rk =
bk

ln 2

pk
bkN0

∫ +∞

0

e−x/φk

1 + pkx
bkN0

dx

=
bk

ln 2

∫ +∞

0

e−x/φk

x+ bkN0

pk

dx.

According to [37, Section 8.212], we have, for real number a
and b > 0,

∫ +∞
0

e−bx

a+x dx = −eabEi(−ab), where Ei(x) =∫ x
−∞

eρ

ρ dρ is the exponential integral function, Rk can be
rewritten in closed-form as follows,

Rk = − bk
ln 2

ebkθkEi(−bkθk), (19)

where θk = N0

pkφk
.

It can be verified that the transmission rate Rk in (19) is an
increasing function of bk, which we denote as Rk(bk). Hence,
T comm
k = S

Rk(bk) decreases with increasing bk. The following
lemma will be beneficial for solving Problem (P2).

Lemma 1. Constraints (18a) in Problem (P2) can be replaced
by

T comp
k + T comm

k = Td, ∀k ∈ [K].
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Proof. Please see Appendix C.

From Lemma 1, each bk can be represented as a function
of Td, i.e.,

bk(Td) = R−1
k

(
S

Td − T comp
k

)
, (20)

where R−1
k (·) denotes the inverse function of Rk(·). Since

it holds that
∑K
k=1 bk = B0, we can find Td by solving the

equation as follows
K∑
k=1

bk(Td) = B0. (21)

It can be verified that bk(Td) is a decreasing function of Td.
Therefore, Equation (21) can be efficiently solved by bisection
search. Note that although Rk(·) is an increasing function with
closed form expression, it is nontrivial to obtain a tractable
expression of R−1

k (·), so we can not get bk with given Td
directly from (20). Instead, bk with given Td can be obtained
by solving

Rk(bk) =
S

Td − T comp
k

,

with the tool of bisection search. This is feasible due to the
monotonicity of Rk.

In consequence, Problem (P2) can be solved by two-layer
bisection search as summarized in Algorithm 1. In the outer
layer bisection, we search Td in the range of [T−d , T

+
d ], where

T−d = max
k
{T comp

k } and T+
d = max

k
{T comp

k + Rk(B0/K)}.
The inner layer bisection in Step 5 is implemented in the
range of [0, B0]. Since only single variable bk involves in each
bisection, the process is straightforward, and thus we omit the
detailed steps for simplicity.

Algorithm 1 Two-layer bisection search for solving Problem
(P2)

1: Input parameters: B0, {θk}, {T comp
k }, T+

d = max
k
{T comp

k +

Rk(B0/K)}, T−d = max
k
{T comp

k }, accuracy threshold ε, and

temporary variable B̄0 = 0.
2: while |B0 − B̄0| > ε do
3: Td =

T+
d

+T−
d

2
4: for k = 1 : K do
5: Solve Rk(bk) = S

Td−T
comp
k

by bisection search with
respect to bk.

6: end for
7: B̄0 =

∑K
k=1 bk

8: if B̄0 > B0 then
9: T−d = Td

10: else
11: T+

d = Td

12: end if
13: end whilereturn {bk}

C. Quantization level optimization

Next, we focus on optimizing the quantization level q
under fixed bandwidth allocation. First, we relax the value
of q from integer to real number in interval q ∈ [2,+∞).
For the convenience of optimization, we approximate Nε in

Proposition 1 as Nε ≈
√
d

qKH1 +H2, where H1 = A
ε −B and

H2 = A+D
ε −B − C, by getting rid of the ceiling operation.

Then, we introduce an intermediate variable T̃ , and Problem
(P1) reduces to

(P3) min
q,T̃

T̃ , (22)

s.t.
(
T comp
k + T comm

k

)(√d
qK

H1 +H2

)
≤ T̃ , (22a)

q ≥ 2. (22b)

Problem (P3) is non-convex due to the non-convexity of
constrains in (22a). To tackle this problem, the successive
convex approximation (SCA) technique can be applied to
obtain a stationary point [15]. An algorithm summarizing the
above procedure is given by Algorithm 2. The key idea is
that in each iteration, the original problem is approximated
by a tractable convex one at a given local point as elaborated
below. To start with, we substitute T comm

k = (1+log2(1+q))d
Rk

into (22a), and obtain(
T comp
k +

(1 + log2(1 + q)) d

Rk

)(√
d

qK
H1 +H2

)
≤ T̃ .

After taking the logarithm of both sides, and rearranging, it
yields

Jk(q)− ln(qK)− ln
(
T̃
)
≤ 0, (23)

where Jk(q) = ln
(
T comp
k + (1+log2(1+q))d

Rk

)
+

ln
(
qKH2 +H1

√
d
)

. It can be verified that Jk(q) is a
concave function of q. Recall that any concave function is
globally upper-bounded by its first-order Taylor expansion
at any point. Therefore, with given local point q(r), we can
establish an upper bound of Jk(q) as

Jk(q) ≤ Jk(q(r)) + J ′k(q(r))
(
q − q(r)

)
, Ĵk(q),

where J ′k(q(r)) is the derivative of Jk(q) at q(r), i.e.,

J ′k(q(r)) =
KH2

q(r)KH2 +H1

√
d

+
1

ln(2)
(
log2(1 + q(r)) +RkT

comm
k /d+ 1

)
(1 + q(r))

.

By replacing Jk(q) in (23) with its upper bound Ĵk(q), with
given local point q(r) at r-th iteration, the next point at (r+1)-
th iteration can be obtained by solving the following problem

(P3.1) q(r+1) = arg min
q

T̃ , (24)

s.t. Ĵk(q)− ln(qK)− ln
(
T̃
)
≤ 0, ∀k ∈ [K], (24a)

q ≥ 2. (24b)

Since the left side of constraint (24a) are jointly convex with
respect to q and T̃ , Problem (P3.1) is convex, which can be
solved by standard convex optimization tools such as CVXPY
[38]. After the iterations converge, e.g., the gap between T̃ (r)

and T̃ (r+1) is lower than a given threshold, Problem (P3) is
deemed solved.
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Algorithm 2 SCA method for solving Problem (P3)
1: Find a feasible initial quantization level q(0) in (22), and set
r = 0 and the threshold ε.

2: repeat
3: Set q(r+1) as the solution of Problem (P3.1).
4: r ← r + 1
5: until |T̃ (r) − T̃ (r−1)| ≤ ε return q(r)

D. A joint optimization algorithm

Since the unique solution of Problem (P2) can be obtained
by Algorithm 1 and a stationary point of Problem (P3) can be
reached by Algorithm 2, the sub-optimal bandwidth allocation
and quantization level can be jointly obtained by alternately
solving Problem (P2) and (P3), which is summarized in
Algorithm 3. It can be verified that the sub-optimal solution
from Algorithm 3 is a stationary point of the original Problem
(P1).

Note that solving Problem (P1) may lead to non-integer q,
which needs further rounding technique to yield an integer q
for practical implementation. One possible rounding technique
is discussed as follows. We denote T (q, {bk}) as the total
training time in Problem (P1) when q and {bk} is substituted.
After finding the optimized quantization level q̂ and optimal
bandwidth allocation {b∗k}, the final quantization level q∗ is
obtained as

q∗ = arg min
q∈{dq̂e−1,dq̂e}

T (q, {b∗k}).

Algorithm 3 The joint optimization algorithm for solving
Problem (P1)

1: Initialization: Quantization level q(0), bandwidth allocation
{b(0)k }. Set r = 0 and the accuracy threshold ε.

2: repeat
3: Update the bandwidth allocation{br+1

k } by Algorithm 1.
4: Update the quantization level q(r+1) and total training time
T̃ (q(r+1), {b(r+1)

k }) by Algorithm 2.
5: r ← r + 1
6: until |T (q(r), {b(r)k })− T (q(r−1), {b(r−1)

k })| ≤ ε return {b∗k =

b
(r)
k } and q∗ = arg minq∈{dq(r)e−1,dq(r)e} T (q, {b∗k})

V. EXPERIMENTAL EVALUATION

In this section, we provide numerical results of two ex-
periments under different wireless communication scenarios
and learning tasks, which capture real system heterogeneity, to
examine our theoretical results. In Experiment I, we consider
a learning task with strongly convex loss function and training
model of small size. In Experiment II, to stretch the theory,
we consider a learning task with non-convex loss function
and training model of large size. Although our analysis is
developed based on the assumption of strongly convex loss
function, we show that the proposed algorithm can also
work well in the case with non-convex loss function. All
experiments are implemented by PyTorch using Python 3.8
on a Linux server with one NVIDIA® GeForce® RTX 3090
GPU 24GB and one Intel® Xeon® Gold 5218 CPU.

A. Experiment setup

FEEL system: We consider a FEEL system with a edge
server covering a circular area of radius r = 500 m. Within the
area, K = 6 edge devices are placed randomly and distributed
uniformly over the circular area with the exclusion of a central
disk of radius rh = 100 m. The transmit power of each device
is 1 dBm. To expose the heterogeneity of the edge devices,
the CPU frequency of each device is assumed to be uniformly
distributed from 100 MHz to 1 GHz. The number of processing
cycles of device k for executing one batch of samples is ν =
108 in Experiment I and ν = 2.5× 1010 in Experiment II.

Wireless propagation: The large-scale propagation coef-
ficient in dB from device k to the edge server is modeled
as [φk]dB = [PLk]dB + [ζk]dB, where [PLk]dB = 128.1 +
37.6 log10 distk (distk is the distance in kilometer) is the path
loss in dB, and [ζk]dB is the shadow fading in dB [39]. In this
simulation, [ζk]dB is Gauss-distributed random variable with
mean zero and variance σ2

ζ = 8 dB. The noise power spectral
density is N0 = −174 dBm/Hz, and the total bandwidth is
B0 = 10 KHz [28].

Learning tasks and models: In Experiment I, we consider
the `2 regularized logistic regression task on synthetic data
[40]. The local loss function in (1) at device k is given by

Fk(w) =
1

D

∑
(xi,yi)∈Dk

log2

(
1 + exp

(
−xTi wyi

))
+ λ‖w‖22,

where xi ∈ Rd and yi ∈ {−1, 1}. The `2 regularization
parameter λ is set to λ = 10−6. It can be verified that the local
loss function Fk(w) is smooth and strongly convex. Each data
sample (xi, yi) is generated in four steps as follows

1) Dense data generation: x̄ij ∼ N (0, 1), ∀ j ∈ [d];
2) Magnitude sparsification: Θj ∼ Uniform[0, 1], Θj ←

∆1Θj if Θj ≤ ∆2, ∀ j ∈ [d];
3) Data sparsification: xij ← x̄ij ·Θj , ∀ j ∈ [d];
4) Label generation: w ∼ N (0, Id), yi ← sgn(x̄Ti w).

Note that the parameters ∆1 and ∆2 control the sparsity of
data points and the gradients3 [40]. The parameters ∆1 and
∆2 are set to 0.9 and 0.25 in this experiment. Moreover, the
dimension of each data point is set to d = 1024. Hence, the
model contains 1024 parameters in total. We generate 48,000
data points for training and 12,000 data points for validation.

In Experiment II, we consider the learning task of image
classification using the well-known CIFAR-10 dataset, which
consists of 50,000 training images and 10,000 validation im-
ages in 10 categories of colorful objectives such as airplanes,
cars, etc. ResNet-20 (269,722 parameters in total) with batch
normalization4 is applied as the classifier model [42].

Training and optimization parameters: We consider a
decaying learning rate as ηn = 5

n+10 in Experiment I, where

3From our experiments, the effect of stochastic quantization on SGD
convergence depends heavily on the sparsity structure of the gradients.
Therefore, we choose this dataset in Experiment I to better validate our
theoretical results. Moreover, to the best of our knowledge, how the sparsity
structure of the gradients affects the learning algorithm that employs stochastic
quantization as compression scheme has not been revealed in the literature,
which is an interesting topic but beyond the scope of this work.

4The implementation of ResNet-20 follows this GitHub repository: https:
//github.com/hclhkbu/GaussianK-SGD [41].

https://github.com/hclhkbu/GaussianK-SGD
https://github.com/hclhkbu/GaussianK-SGD
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Fig. 3. Robustness of the joint-data-and-model-driven fitting based method.
(The fitted loss function and the actual loss versus communication round when
the quantization levels are set as q1 and q2 and other values.)

n is the index of communication round, and the learning
rate is set to ηn = 100

n+1000 in Experiment II. To deliver
rigorous results, we strictly control all unrelated variables in
both experiments.

B. Experiment results in Experiment I

1) Estimation of data-related parameters: In the optimiza-
tion in Section IV-C, we need to obtain the values of H1

and H2 using the proposed joint data-and-model-driven fitting
method in Section III-C. With the joint data-and-model-driven
fitting method, for any given two quantization levels q1 and
q2, and the threshold of loss optimality gap upper bound ε,
we can obtain an estimation of H1 and H2, which are used
in Algorithm 3. Also, the optimal loss value can be obtained
by the estimation of Z in Eq. (9), i.e., F (w∗) ≈ Z ≈ 0.247.
The threshold of loss optimality gap upper bound is set as
ε = 0.012. One can choose any combination of q1 and q2

to implement the estimation in theory. As a reminder to the
readers, however, in our experience, the combination of q1 and
q2 with large difference leads to better estimation accuracy. In
our results, we choose (q1, q2) = (4, 6) in the joint data-and-
model-driven fitting method, and obtain that H1 ≈ 43.01 and
H2 ≈ 48.79. To show the robustness of our estimation method,
we plot the fitted loss function and the actual loss when the
quantization levels are q1 = 4 and q2 = 6, and also other
values than q1 and q2, e.g., 8 and 16, as shown in Fig. 3, and
we can see that the fitted loss function fits the actual loss well.

2) Optimization of quantization level: Fig. 4 plots the
total training time versus communication round in simulation
when the bandwidth allocation is optimal. We run the same
training process for at least 5 times on each quantization level.
Fig. 4 shows that there exists optimal quantization level that
minimizes the total training time. Recall the facts from Section
III that the total training time T = Nε · Td, and Nε is an
decreasing function of quantization level q, while Td is an
increasing function of q. In other words, Fig. 4 demonstrates
the trade-off between total communication rounds Nε and
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Fig. 4. The total training time versus quantization level q in simulation
when the bandwidth allocation is optimal in Experiment I. (The optimal
quantization level and corresponding training time from Algorithm 3 in theory
are annotated by “x” in red.)

per-round latency Td in FEEL system. Moreover, it can be
observed from the figure that the optimal quantization levels
obtained in theory from Algorithm 3 in Section IV match
the results by simulation, which confirms the validity of our
proposed algorithms. In Fig. 5(a), we compare the training
loss under optimal quantization level and optimal bandwidth
allocation and the training loss under other quantization level
and optimal bandwidth allocation. It can be observed that
the training loss of optimal quantization level under optimal
bandwidth allocation reaches the predefined threshold in a
shorter time.

3) Optimization of bandwidth: Fig. 5 depicts the compar-
ison between the schemes with optimal and equal bandwidth
allocation in terms of loss optimality gap and test accuracy.
We can observe that the scheme with optimal bandwidth
allocation can reach the predefined threshold and obtain a
higher test accuracy in a shorter time. This indicates that our
bandwidth allocation algorithm is effective and necessary in
FEEL system. To show how the heterogeneous computation
power of edge devices affect the communication resource
allocation, we present the CPU frequency of each edge device
and its corresponding optimal allocated bandwidth in Fig. 6.
It can be observed that the edge devices with lower CPU
frequency will be allocated with a larger bandwidth, which
in spirit has similarity to the well-known phenomenon of
“water-filling” in the problem of power allocation in wireless
communication [36].

C. Experiment results in Experiment II

We conduct Experiment II to evaluate our method and
algorithms on learning model with non-convex loss function.
In this experiment, we choose (q1, q2) = (15, 20) and obtain
H1 ≈ 96.26 and H2 ≈ 808.53 by our joint data-and-model-
driven fitting method. The threshold of loss optimality gap
upper bound is set as ε = 0.22. Fig. 7 shows the total
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Fig. 6. Optimal bandwidth allocation (bars on the right) and CPU frequency
(bars on the left) of each edge device in Experiment I.

training time versus quantization level in simulation when
the bandwidth allocation is optimal; Fig. 8 shows the loss
value and test accuracy versus training time in simulation with
different quantization levels and bandwidth allocations. We
can obtain the similar observations from Fig. 7 and Fig. 8 as
in Experiment I, which reveals that our method and algorithm
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Fig. 7. The total training time versus quantization level q in simulation
when the bandwidth allocation is optimal in Experiment II. (The optimal
quantization levels and corresponding training time from Algorithm 3 in
theory are annotated by “x” in red.)

also work well in non-convex setting, although they are derived
under strongly-convex setting.

VI. CONCLUSION

This paper have studied the training time minimization for
quantized FEEL with optimized quantization level and band-
width allocation. On the basis of the convergence analysis of
quantized FEEL and our proposed joint-data-and-model-driven
fitting method, we derived the closed-form expression of the
total training time and characterizes the trade-off between
the convergence speed and communication overhead, which
is governed by the quantization level. Next, we minimized
the total training time by optimizing the quantization level
and bandwidth allocation, for which a high-quality near-
optimal solutions are obtained by alternating optimization.
The theoretical results developed can be used to guide the
system optimization and contribute to the understanding of
how wireless communication system can properly coordinate
resources to accomplish learning tasks. This also opens several
directions for further research. One direction is to implement
device sampling in quantized FEEL, in which how the band-
width is allocated to minimize the training time is completely
a different story. The other direction is to consider error
compensation in quantized FEEL to mitigate the effects of
compression errors.

APPENDIX A
PROOF OF THEOREM 1

We first give one necessary lemma before proving Theorem
1, and also provide the proof for this lemma in Appendix B.

Lemma 2. Under the same conditions in Theorem 1, we have

E
[∥∥∥w(n+1) −w∗

∥∥∥2
]
≤ (1− µηn)E

[∥∥∥w(n) −w∗

∥∥∥2
]

+ αΓη2
n,



12

10 15 20 25 30 35 40 45 50
Training time (hours)

10 2

10 1

100
Op

tim
al

ity
 g

ap

Optimality gap threshold = 0.22

q=30, optimal bandwidth allocation
q=q*=59, optimal bandwidth allocation
q=q*=59, equal bandwidth allocation

32 34 36 38 40 42

(a)

0 10 20 30 40 50
Training time (hours)

10

20

30

40

50

60

70

Te
st

 a
cc

ur
ac

y 
(%

)

q=30, optimal bandwidth allocation
q=q*=59, equal bandwidth allocation
q=q*=59, optimal bandwidth allocation

40.0 42.5 45.0 47.5 50.0 52.5 55.0

(b)

Fig. 8. Optimality gap versus training time (a) and test accuracy versus
training time (b) in Experiment II

where Γ = 2LFδ + 1
K

∑K
k=1 δ

2
k.

Next, with Lemma 2 and decaying learning rate ηn = β
γ+n ,

we prove that E
[∥∥w(n) −w∗

∥∥2
]
≤ ν

γ+n by induction where

ν = max

{
(γ + 1) ‖w0 −w∗‖2 ,

αΓβ2

µβ − 1

}
.

First, it holds for n = 1 by the definition of ν. Then, assuming
it holds for some n > 1, it follows from Lemma 2 that

E
[∥∥∥w(n+1) −w∗

∥∥∥2
]

≤ (γ + n− µβ)ν

(γ + n)2
+

αΓβ2

(γ + n)2

=
(γ + n− 1)ν

(γ + n)2
+
αΓβ2 − (µβ − 1)ν

(γ + n)2
.

By the definition of ν, we have αΓβ2− (µβ−1)ν ≤ 0. Then,

it follows that

E
[∥∥∥w(n+1) −w∗

∥∥∥2
]
≤ (γ + n− 1)ν

(γ + n)2

≤ ν

γ + n+ 1
.

Specifically, we choose β = 2
µ , γ = 2αL

µ − 1. Using
max{x, y} ≤ x + y, we have ν ≤ 2αL

µ ‖w0 −w∗‖2 + 4αΓ
µ2 .

Therefore, it satisfies that

E
[∥∥∥w(n) −w∗

∥∥∥2
]

≤ α/µ

n+ 2αL/µ− 1

(
2L ‖w0 −w∗‖2 +

4Γ

µ

)
.

Then, by the L-smoothness of F (w), it holds that

E
[
F (w(n))

]
− F (w∗) ≤

L

2
E
[∥∥∥w(n) −w∗

∥∥∥2
]
.

It follows that

E
[
F (w(n))

]
− F (w∗)

≤ αL/µ

n+ 2αL/µ− 1

(
L ‖w0 −w∗‖2 +

2Γ

µ

)
.

We complete the proof of Theorem 1 by setting n = N .

APPENDIX B
PROOF OF LEMMA 2

Notice that w(n+1) = w(n) − ηn
K

∑K
k=1Q(g

(n)
k ), then

∥∥∥w(n+1) −w∗

∥∥∥2

=

∥∥∥∥∥w(n) − ηn
K

K∑
k=1

Q(g
(n)
k )−w∗

∥∥∥∥∥
2

= ‖a1 − a2‖2

= ‖a1‖2 + ‖a2‖2 − 2 〈a1,a2〉 ,

where a1 = w(n) − w∗ − ηn
K

∑K
k=1 g

(n)
k , and a2 =

ηn
K

∑K
k=1

(
Q(g

(n)
k )− g

(n)
k

)
. Due to EQ[Q(g

(n)
k )] = g

(n)
k , we

have EQ[〈a1,a2〉] = 0, which leads to

∥∥∥w(n+1) −w∗

∥∥∥2

= ‖a1‖2 + ‖a2‖2 . (25)

Next, we first obtain upper bounds of A1 and A2; taking
these bounds into (25), then we find the connection between∥∥w(n+1) −w∗

∥∥2
and

∥∥w(n) −w∗
∥∥2

after some proper ma-
nipulations.
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A. Bound of ‖a1‖2

To bound ‖a1‖2, we break ‖a1‖2 as

‖a1‖2 =

∥∥∥∥∥w(n) −w∗ −
ηn
K

K∑
k=1

g
(n)
k

∥∥∥∥∥
2

=
∥∥∥w(n) −w∗

∥∥∥2

+

∥∥∥∥∥ηnK
K∑
k=1

g
(n)
k

∥∥∥∥∥
2

︸ ︷︷ ︸
B1

+ 2

〈
w∗ −w(n),

ηn
K

K∑
k=1

g
(n)
k

〉
︸ ︷︷ ︸

B2

.

To bound B1, we use ‖
∑K
k=1 ak‖2 ≤ K

∑K
k=1 ‖ak‖2. This

gives

B1 ≤
η2
n

K

K∑
k=1

‖g(n)
k ‖

2.

By the µ-strongly convexity of Fk(w), it follows that〈
w∗ −w(n),g

(n)
k

〉
≤Fk(w∗)− Fk(w(n))− µ

2

∥∥∥w(n) −w∗

∥∥∥2

.

Hence, B2 can be bounded by

B2 ≤ 2
ηn
K

K∑
k=1

(
Fk(w∗)− Fk(w(n))

)
− µηn

∥∥∥w(n) −w∗

∥∥∥2

.

B. Bound of ‖a2‖2
Since g

(n)
k ’s are independent and

EQ
[∥∥∥Q(g

(n)
k )− g

(n)
k

∥∥∥]2 ≤ √dq ∥∥∥g(n)
k

∥∥∥2

holds, it follows that

EQ[‖a2‖2] ≤
√
dη2
n

qK2

K∑
k=1

∥∥∥g(n)
k

∥∥∥2

.

C. Bound of (25)
With these bounds at hand, taking expectation of (25) over

the stochastic quantizer Q and stochastic gradient at round n,
we have that

E
[∥∥∥w(n+1) −w∗

∥∥∥2
]

≤ (1− µηn)
∥∥∥w(n) −w∗

∥∥∥2

+ 2
ηn
K

K∑
k=1

(
Fk(w∗)− Fk(w(n))

)
+
αη2

n

K

K∑
k=1

E‖g(n)
k ‖

2. (26)

Recall that α =
√
d

qK + 1. From Assumption 3, we have that

E‖g(n)
k ‖

2 ≤ δ2
k + ‖∇Fk(w(n))‖2. (27)

After substituting (27) into (26), it yields

E
[∥∥∥w(n+1) −w∗

∥∥∥2
]

≤ (1− µηn)
∥∥∥w(n) −w∗

∥∥∥2

+ 2
ηn
K

K∑
k=1

(
Fk(w∗)− Fk(w(n))

)
+
αη2

n

K

K∑
k=1

(
δ2
k + ‖∇Fk(w(n))‖2

)
.

The L-smoothness of Fk(w) gives that

‖∇Fk(w(n))‖2 ≤ 2L
(
Fk(w(n))− F ∗k

)
,

It follows that

E
[∥∥∥w(n+1) −w∗

∥∥∥2
]

≤ (1− µηn)
∥∥∥w(n) −w∗

∥∥∥2

+
αη2

n

K

K∑
k=1

δ2
k

+ 2
ηn
K

K∑
k=1

(
Fk(w∗)− Fk(w(n))

)
︸ ︷︷ ︸

C1

+
2Lη2

nα

K

K∑
k=1

(
Fk(w(n))− F ∗k

)
︸ ︷︷ ︸

C2

.

After rearranging C1 + C2, it becomes

C1 + C2 = 2ηn (αLηn − 1)
(
F (w(n))− F (w∗)

)
+ 2αLη2

nFδ,

where Fδ := F (w∗) − 1
K

∑K
k=1 F

∗
k . It can be verified that

ηn ≤ 1
αL , and from F (w(n)) ≥ F (w∗), we have

C1 ≤ 2αLη2
nFδ.

Taking total expectation of (25), it yields that

E
[∥∥∥w(n+1) −w∗

∥∥∥2
]
≤ (1− µηn)E

[∥∥∥w(n) −w∗

∥∥∥2
]

+ αη2
n(2LFδ +

1

K

K∑
k=1

δ2
k),

which completes the proof.

APPENDIX C
PROOF OF LEMMA 1

If T comp
k + T comm

k < Td, ∀k ∈ [K], Td can be reduced until
some k ∈ [K] satisfy that T comp

k + T comm
k = Td. Denote K =

{k ∈ [K]|T comp
k + T comm

k < Td} and K̄ = {k ∈ [K]|T comp
k +

T comm
k = Td}. Obviously, K + K̄ = [K]. Since T comm

k is an
decreasing function of bk, we can enforce T comp

k +T comm
k = Td

by decreasing bk for all k ∈ K. Then, K = ∅ and K̄ = [K].
In this case, if

∑K
k=1 bk < B, we can properly increase each

bk, without violating T comp
k + T comm

k = Td, k ∈ [K], until∑K
k=1 bk = B, and Td will decrease as well.
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