Abstract
In this paper, physical layer security techniques are investigated for cooperative multi-input multi-output (C-MIMO), which operates as an underlaid cognitive radio system that coexists with a primary user (PU). The underlaid secrecy paradigm is enabled by improving the secrecy rate towards the C-MIMO receiver and reducing the interference towards the PU. Such a communication model is especially suitable for implementing Industrial Internet of Things (IIoT) systems in the unlicensed spectrum, which can trade off spectral efficiency and information secrecy. To this end, we propose an eigenspace-adaptive precoding (EAP) method and formulate the secrecy rate optimization problem, which is subject to both the single device power constraint and the interference power constraint. This precoder design is enabled by decomposing the original optimization problem into eigenspace selection and power allocation sub-problems. Herein, the eigenvectors are adaptively selected by the transmitter according to the channel conditions of the underlaid users and the PUs. In addition, a simplified EAP method is proposed for large-dimensional C-MIMO transmission, exploiting the additional spatial degree of freedom for a low-complexity secrecy precoder design. Numerical results show that by transmitting signal and artificial noise in the properly selected eigenspace, C-MIMO can eliminate the secrecy outage and outperforms the fixed eigenspace precoding methods. Moreover, the proposed simplified EAP method for the large-dimensional C-MIMO can significantly improve the secrecy rate.
摘要
本文研究协作多输入多输出(cooperative multi-input multi-output, C-MIMO)系统中的物理层安全技术, 该技术可以被用于主次用户共存的衬底式认知无线电网络, 并通过提高次级C-MIMO接收机的安全速率同时减少对主用户的干扰来实现上述安全通信范式。该通信模型尤其适合应用于基于非授权频谱的工业互联网安全传输场景, 可以实现频谱效率和安全速率的有效平衡和折衷。为此, 我们提出一种特征空间自适应预编码(eigenspace-adaptive precoding, EAP)方法, 并给出在单站发射功率约束和干扰功率约束下的安全速率优化问题。通过将原始优化问题分解为预编码特征空间选择和功率分配两个子问题, 来实现安全预编码器的设计, 其中, 特征空间由发射机根据主用户和次级用户的信道条件进行自适应选择。此外, 本文针对海量设备、大维天线系统提出一种简化的EAP方法, 该方法充分利用大维天线的空间自由度来降低安全预编码优化的复杂度。仿真结果表明, 在自适应选择的特征空间中传输信号和人工噪声, C-MIMO系统可以完全消除保密中断概率, 获得相比固定特征空间预编码方案更高的安全速率。此外, 针对大维C-MIMO提出的简化EAP方法可以显著提高安全速率。
References
Akhyar F, Lin CY, Muchtar K, et al., 2019. High efficient single-stage steel surface defect detection. Proc 16th IEEE Int Conf on Advanced Video and Signal Based Surveillance, p.1–4. https://doi.org/10.1109/AVSS.2019.8909834
Ben-Tal A, Nemirovski A, 2001. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. Springer, Philadelphia, USA.
Bloch MR, Laneman JN, 2013. Strong secrecy from channel resolvability. IEEE Trans Inform Theory, 59(12):8077–8098. https://doi.org/10.1109/TIT.2013.2283722
Borges PVK, Izquierdo E, 2010. A probabilistic approach for vision-based fire detection in videos. IEEE Trans Circ Syst Video Technol, 20(5):721–731. https://doi.org/10.1109/TCSVT.2010.2045813
Chen LW, Chen CR, Chen DE, 2017. VIPS: a video-based indoor positioning system with centimeter-grade accuracy for the IoT. Proc IEEE Int Conf on Pervasive Computing and Communications Workshops, p.63–65. https://doi.org/10.1109/PERCOMW.2017.7917523
Chettri L, Bera R, 2020. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Int Things J, 7(1):16–32. https://doi.org/10.1109/JIOT.2019.2948888
Chiurtu N, Rimoldi B, Telatar E, 2001. On the capacity of multi-antenna Gaussian channels. Proc IEEE Int Symp on Information Theory, p.53–57. https://doi.org/10.1109/ISIT.2001.935916
Csiszar I, Körner J, 1978. Broadcast channels with confidential messages. IEEE Trans Inform Theory, 24(3):339–348. https://doi.org/10.1109/TIT.1978.1055892
Deng YS, Wang LF, Zaidi SAR, et al., 2016. Artificial-noise aided secure transmission in large scale spectrum sharing networks. IEEE Trans Commun, 64(5):2116–2129. https://doi.org/10.1109/TCOMM.2016.2544300
Fang B, Qian ZP, Shao W, et al., 2016. Precoding and artificial noise design for cognitive MIMOME wiretap channels. IEEE Trans Veh Technol, 65(8):6753–6758. https://doi.org/10.1109/TVT.2015.2477305
Goel S, Negi R, 2008. Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun, 7(6):2180–2189. https://doi.org/10.1109/TWC.2008.060848
Hampel G, Li C, Li JY, 2019. 5G ultra-reliable low-latency communications in factory automation leveraging licensed and unlicensed bands. IEEE Commun Mag, 57(5):117–123. https://doi.org/10.1109/MCOM.2019.1601220
He X, Yener A, 2014. MIMO wiretap channels with unknown and varying eavesdropper channel states. IEEE Trans Inform Theory, 60(11):6844–6869. https://doi.org/10.1109/TIT.2014.2359192
Hořejší P, Novikov K, Šimon M, 2020. A smart factory in a smart city: virtual and augmented reality in a smart assembly line. IEEE Access, 8:94330–94340. https://doi.org/10.1109/ACCESS.2020.2994650
Horst R, Tuy H, 1996. Global Optimization (3rd Ed.). Springer, Berlin, Heidelberg, Germany.
Hu TT, Xiong J, Ma DT, et al., 2018. Optimal and robust AN-aided precoding design for cognitive MIMOME wiretap channels. Proc IEEE/CIC Int Conf on Communications in China, p.500–505. https://doi.org/10.1109/ICCChina.2018.8641254
Hussain T, Muhammad K, Del Ser J, et al., 2020. Intelligent embedded vision for summarization of multiview videos in IIoT. IEEE Trans Ind Inform, 16(4):2592–2602. https://doi.org/10.1109/TII.2019.2937905
Lin PH, Lai SH, Lin SC, et al., 2013. On secrecy rate of the generalized artificial-noise assisted secure beamforming for wiretap channels. IEEE J Sel Areas Commun, 31(9):1728–1740. https://doi.org/10.1109/JSAC.2013.130907
Lu X, Petrov V, Moltchanov D, et al., 2019. 5G-U: conceptualizing integrated utilization of licensed and unlicensed spectrum for future IoT. IEEE Commun Mag, 57(7):92–98. https://doi.org/10.1109/MCOM.2019.1800663
Nguyen DC, Ding M, Pathirana PN, et al., 2022. 6G Internet of Things: a comprehensive survey. IEEE Int Things J, 9(1):359–383. https://doi.org/10.1109/JIOT.2021.3103320
Ozgur A, Leveque O, Tse D, 2013. Spatial degrees of freedom of large distributed MIMO systems and wireless ad hoc networks. IEEE J Sel Areas Commun, 31(2):202–214. https://doi.org/10.1109/JSAC.2013.130209
Pei YY, Liang YC, Zhang L, et al., 2010. Secure communication over MISO cognitive radio channels. IEEE Trans Wirel Commun, 9(4):1494–1502. https://doi.org/10.1109/TWC.2010.04.090746
Rajashekar R, Hanzo L, 2017. Iterative matrix decomposition aided block diagonalization for mm-wave multiuser MIMO systems. IEEE Trans Wirel Commun, 16(3):1372–1384. https://doi.org/10.1109/TWC.2016.2628357
Sibomana L, Tran H, Zepernick HJ, 2015. On physical layer security for cognitive radio networks with primary user interference. Proc IEEE Military Communications Conf, p.281–286. https://doi.org/10.1109/MILCOM.2015.7357456
Simon SH, Moustakas AL, Marinelli L, 2006. Capacity and character expansions: moment-generating function and other exact results for MIMO correlated channels. IEEE Trans Inform Theory, 52(12):5336–5351. https://doi.org/10.1109/TIT.2006.885519
Sternberg S, 1995. Group Theory and Physics. Cambridge University Press, Cambridge, UK.
Wang HM, Wang C, Ng DWK, et al., 2016. Artificial noise assisted secure transmission for distributed antenna systems. IEEE Trans Signal Process, 64(15):4050–4064. https://doi.org/10.1109/TSP.2016.2558164
Wyner AD, 1975. The wire-tap channel. Bell Syst Techn J, 54(8):1355–1387. https://doi.org/10.1002/j.1538-7305.1975.tb02040.x
Zhang X, Zhou XY, McKay MR, 2013. On the design of artificial-noise-aided secure multi-antenna transmission in slow fading channels. IEEE Trans Veh Technol, 62(5):2170–2181. https://doi.org/10.1109/TVT.2013.2238687
Zheng TX, Wang HM, Yuan JH, et al., 2015. Multi-antenna transmission with artificial noise against randomly distributed eavesdroppers. IEEE Trans Commun, 63(11):4347–4362. https://doi.org/10.1109/TCOMM.2015.2474390
Zheng Z, Haas ZJ, 2017. On the performance of reconfigurable distributed MIMO in mobile networks. IEEE Trans Commun, 65(4):1609–1622. https://doi.org/10.1109/TCOMM.2017.2656129
Zheng Z, Haas ZJ, Kieburg M, 2019. Secrecy rate of cooperative MIMO in the presence of a location constrained eavesdropper. IEEE Trans Commun, 67(2):1356–1370. https://doi.org/10.1109/TCOMM.2018.2877329
Zhou XY, McKay MR, 2010. Secure transmission with artificial noise over fading channels: achievable rate and optimal power allocation. IEEE Trans Veh Technol, 59(8):3831–3842. https://doi.org/10.1109/TVT.2010.2059057
Zhu FC, Yao ML, 2016. Improving physical-layer security for CRNs using SINR-based cooperative beamforming. IEEE Trans Veh Technol, 65(3):1835–1841. https://doi.org/10.1109/TVT.2015.2412152
Zhu Y, Zhou YK, Patel S, et al., 2013. Artificial noise generated in MIMO scenario: optimal power design. IEEE Signal Process Lett, 20(10):964–967. https://doi.org/10.1109/LSP.2013.2276042
Author information
Authors and Affiliations
Corresponding author
Additional information
Z. ZHENG is supported by the National Natural Science Foundation of China (No. 61901033) and the Natural Science Foundation of Beijing (No. L212031); X.Y. BAO is supported by the China Academy of Information and Communications Technology; Y.Z. HUANG is supported by the National Natural Science Foundation of China (No. 61971474) and the Beijing Nova Program (No. Z201100006820121)
Contributors
Xinyao WANG and Zhong ZHENG designed the research. Xuyan BAO and Yuzhen HUANG processed the data. Xinyao WANG and Zhong ZHENG drafted the paper. Zesong FEI helped organize the paper. Xuyan BAO, Yuzhen HUANG, and Zesong FEI revised and finalized the paper.
Compliance with ethics guidelines
Xinyao WANG, Xuyan BAO, Yuzhen HUANG, Zhong ZHENG, and Zesong FEI declare that they have no conflict of interest.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Rights and permissions
About this article
Cite this article
Wang, X., Bao, X., Huang, Y. et al. On optimization of cooperative MIMO for underlaid secrecy Industrial Internet of Things. Front Inform Technol Electron Eng 24, 259–274 (2023). https://doi.org/10.1631/FITEE.2200188
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2200188
Key words
- Cognitive radio network
- Physical layer security
- Cooperative multi-input multi-output (C-MIMO)
- Eigenspace-adaptive precoding
- Difference convex programming