Skip to main content
Log in

Frequency–angle two-dimensional reflection coefficient modeling based on terahertz channel measurement

基于太赫兹信道测量的频角二维反射系数建模

  • Correspondence
  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

摘要

太赫兹信道传播特性对太赫兹通信系统的设计、评估和优化至关重要。此外, 反射在信道传播中起着重要作用。本文基于大量的信道测量工作, 对太赫兹通道的反射系数进行研究。首先, 建立从220 GHz到320 GHz的太赫兹信道测深平台, 入射角范围从10°到80°。根据实测的传播损耗, 分别计算玻璃、瓷砖、木板、石膏板和铝合金五种建筑材料的频率和入射角的反射系数。研究发现, 由于缺乏与太赫兹相关的参数, 导致非金属材料的菲涅耳模型无法成功地拟合实测数据。因此, 通过改进菲涅耳模型与洛伦兹和德鲁德模型, 提出一个频角二维反射系数模型。该模型表征了反射系数的频率和入射角, 与实测数据的均方根误差较小。总的来说, 这些结果对于太赫兹通道的建模做出贡献。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ahmadi-Shokouh J, Noghanian S, Keshavarz H, 2011. Reflection coefficient measurement for North American house flooring at 57–64 GHz. IEEE Antenn Wirel Propag Lett, 10:1321–1324. https://doi.org/10.1109/LAWP.2011.2177058

    Article  Google Scholar 

  • Alawnch I, Barowski J, Rolfes I, 2018. Extraction of relative permittivity from measured reflection coefficient of dielectric materials in the frequency range 207–247 GHz. Proc 48th European Microwave Conf, p.576–579. https://doi.org/10.23919/EuMC.2018.8541509

  • Chen L, Liao DG, Guo XG, et al., 2019. Terahertz timedomain spectroscopy and micro-cavity components for probing samples: a review. Front Inform Technol Electron Eng, 20(5):591–607. https://doi.org/10.1631/FITEE.1800633

    Article  Google Scholar 

  • Eckhardt JM, Doeker T, Rey S, et al., 2019. Measurements in a real data centre at 300 GHz and recent results. Proc 13th European Conf on Antennas and Propagation, p.1–5.

  • Kim MD, Kim KW, Kwon HK, et al., 2021. Experimental reflection characteristics of 253 GHz in a small closed-room. Proc Int Symp on Antennas and Propagation, p.689–690. https://doi.org/10.23919/ISAP47053.2021.9391212

  • Kokkoniemi J, Petrov V, Moltchanov D, et al., 2016. Wideband terahertz band reflection and diffuse scattering measurements for beyond 5G indoor wireless networks. Proc 22nd European Wireless Conf, p.1–6.

  • Landron O, Feuerstein MJ, Rappaport TS, 1993. In situ microwave reflection coefficient measurements for smooth and rough exterior wall surfaces. Proc 43rd Vehicular Technology Conf, p.77–80. https://doi.org/10.1109/VETEC.1993.510972

  • Piesiewicz R, Kleine-Ostmann T, Krumbholz N, et al., 2005. Terahertz characterisation of building materials. Electron Lett, 41(18):1002–1004. https://doi.org/10.1049/el:20052444

    Article  Google Scholar 

  • Popescu G, 2010. Nanobiophotonics. McGraw-Hill, New York, USA.

    Google Scholar 

  • Tang P, Zhang JH, Tian HY, et al., 2021. Channel measurement and path loss modeling from 220 GHz to 330 GHz for 6G wireless communications. China Commun, 18(5):19–32. https://doi.org/10.23919/JCC.2021.05.002

    Article  Google Scholar 

  • Xing YC, Kanhere O, Ju SH, et al., 2019. Indoor wireless channel properties at millimeter wave and sub-terahertz frequencies. Proc IEEE Global Communications Conf, p.1–6. https://doi.org/10.1109/GLOBECOM38437.2019.9013236

  • Zhang JH, Tang P, Tian L, et al., 2017. 6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication. Sci China Inform Sci, 60(8):080301. https://doi.org/10.1007/s11432-016-9144-x

    Article  Google Scholar 

  • Zhang JH, Kang K, Huang YM, et al., 2019. Millimeter and THz wave for 5G and beyond. China Commun, 16(2):iii–vi.

    Article  Google Scholar 

  • Zhang JH, Tang P, Yu L, et al., 2020. Channel measurements and models for 6G: current status and future outlook. Front Inform Technol Electron Eng, 21(1):39–61. https://doi.org/10.1631/FITEE.1900450

    Article  Google Scholar 

  • Zhu ZB, Hu WD, Qin T, et al., 2020. A high-precision terahertz retrodirective antenna array with navigation signal at a different frequency. Front Inform Technol Electron Eng, 21(3):377–383. https://doi.org/10.1631/FITEE.1900581

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zhang  (张建华).

Additional information

Project supported by the National Key R&D Program of China (No. 2020YFB1805002), the National Science Fund for Distinguished Young Scholars (No. 61925102), the National Natural Science Foundation of China (Nos. 62031019, 92167202, and 62101069), and the BUPT-CMCC Joint Innovation Center

Contributors

Zhaowei CHANG designed and conducted the research, processed the data, and drafted the paper. Pan TANG, Lei TIAN, Li YU, Guangyi LIU, and Liang XIA revised the paper. Jianhua ZHANG revised and finalized the paper.

Compliance with ethics guidelines

Zhaowei CHANG, Jianhua ZHANG, Pan TANG, Lei TIAN, Li YU, Guangyi LIU, and Liang XIA declare that they have no conflict of interest.

Data availability

Due to the nature of this research, participants of this study did not agree for their data to be shared publicly, so supporting data are not available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Z., Zhang, J., Tang, P. et al. Frequency–angle two-dimensional reflection coefficient modeling based on terahertz channel measurement. Front Inform Technol Electron Eng 24, 626–632 (2023). https://doi.org/10.1631/FITEE.2200290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.2200290

关键词

Navigation