Abstract
Next point-of-interest (POI) recommendation is an important personalized task in location-based social networks (LBSNs) and aims to recommend the next POI for users in a specific situation with historical check-in data. State-of-the-art studies linearly discretize the user’s spatiotemporal information and then use recurrent neural network (RNN) based models for modeling. However, these studies ignore the nonlinear effects of spatiotemporal information on user preferences and spatiotemporal correlations between user trajectories and candidate POIs. To address these limitations, a spatiotemporal trajectory (STT) model is proposed in this paper. We use the long short-term memory (LSTM) model with an attention mechanism as the basic framework and introduce the user’s spatiotemporal information into the model in encoding. In the process of encoding information, an exponential decay factor is applied to reflect the nonlinear drift of user interest over time and distance. In addition, we design a spatiotemporal matching module in the process of recalling the target to select the most relevant POI by measuring the relevance between the user’s current trajectory and the candidate set. We evaluate the performance of our STT model with four real-world datasets. Experimental results show that our model outperforms existing state-of-the-art methods.
摘要
下一个兴趣点(POI)推荐是基于位置的社交网络(LBSN)的一项重要任务, 其目标是使用历史签到数据在特定情境下为用户推荐下一个兴趣点。现有研究将用户时空信息线性离散化, 然后使用基于循环神经网络(RNN)的方法进行建模。但是这些研究忽略了时空信息对用户偏好的非线性影响以及用户轨迹和候选兴趣点之间的时空相关性。为解决这些问题, 本文提出一种时空轨迹(STT)模型。该模型使用具有注意力机制的长短期记忆网络(LSTM)作为基本框架, 并将时空信息以编码形式引入模型。在编码信息过程中, 使用指数型衰减因子刻画用户兴趣随时间和距离的非线性漂移特性。此外, 本文在目标召回过程中设计一个时空匹配模块, 该模块通过测量用户历史轨迹与候选集之间的相关性来为用户筛选最有可能的下一个兴趣点。本文使用4个真实数据集评估STT模型性能。实验结果表明, 本文所提方法的推荐效果比主流的推荐模型有显著提升。
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Abdollahi B, Nasraoui O, 2016. Explainable restricted Boltzmann machines for collaborative filtering. https://doi.org/10.48550/arXiv.1606.07129
Aggarwal CC, Han JW, Wang JY, et al., 2004. A framework for projected clustering of high dimensional data streams. In: Nascimento MA, Özsu MT, Kossmann D, et al. (Eds.), Proc VLDB Conf Elsevier, Amsterdam, p.852–863. https://doi.org/10.1016/B978-012088469-8.50075-9
Chen KS, Xu ZH, Gong LY, 2012. Research of the distance calculation algorithm based on RSSI. Adv Mater Res, 499:464–468. https://doi.org/10.4028/www.scientific.net/AMR.499.464
Cheng HT, Koc L, Harmsen J, et al., 2016. Wide & deep learning for recommender systems. Proc 1st Workshop on Deep Learning for Recommender Systems, p.7–10. https://doi.org/10.1145/2988450.2988454
Cui Q, Tang YY, Wu S, et al., 2019. Distance2Pre: personalized spatial preference for next point-of-interest prediction. 23rd Pacific-Asia Conf on Advances in Knowledge Discovery and Data Mining, p.289–301. https://doi.org/10.1007/978-3-030-16142-2_23
Fan W, 2004. Systematic data selection to mine concept-drifting data streams. Proc 10th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.128–137. https://doi.org/10.1145/1014052.1014069
Feng J, Li Y, Zhang C, et al., 2018. DeepMove: predicting human mobility with attentional recurrent networks. Proc World Wide Web Conf, p.1459–1468. https://doi.org/10.1145/3178876.3186058
Feng SS, Li XT, Zeng YF, et al., 2015. Personalized ranking metric embedding for next new POI recommendation. Proc 24th Int Conf on Artificial Intelligence, p.2069–2075.
Gao HJ, Tang JL, Hu X, et al, 2013. Exploring temporal effects for location recommendation on location-based social networks. Proc 7th ACM Conf on Recommender Systems, p.93–100. https://doi.org/10.1145/2507157.2507182
Gehring J, Auli M, Grangier D, et al., 2017. Convolutional sequence to sequence learning. 34th Int Conf on Machine Learning, p.1243–1252.
Guo Q, Sun Z, Zhang J, et al., 2020. An attentional recurrent neural network for personalized next location recommendation. Proc 34th AAAI Conf on Artificial Intelligence, p.83–90. https://doi.org/10.1609/aaai.v34i01.5337
He XN, Liao LZ, Zhang HW, et al., 2017. Neural collaborative filtering. Proc 26th Int Conf on World Wide Web, p.173–182. https://doi.org/10.1145/3038912.3052569
Hochreiter S, Schmidhuber J, 1997. Long short-term memory. Neur Comput, 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Jiang SH, Qian XM, Shen JL, et al., 2015. Author topic modelbased collaborative filtering for personalized POI recommendations. IEEE Trans Multim, 17(6):907–918. https://doi.org/10.1109/TMM.2015.2417506
Kang WC, McAuley J, 2018. Self-attentive sequential recommendation. IEEE Int Conf on Data Mining, p.197–206. https://doi.org/10.1109/ICDM.2018.00035
Kingma DP, Ba J, 2014. Adam: a method for stochastic optimization. https://doi.org/10.48550/arXiv.1412.6980
Li JC, Wang YJ, McAuley J, 2020. Time interval aware self-attention for sequential recommendation. Proc 13th Int Conf on Web Search and Data Mining, p.322–330. https://doi.org/10.1145/3336191.3371786
Lian DF, Zheng VW, Xie X, 2013. Collaborative filtering meets next check-in location prediction. Proc 22nd Int Conf on World Wide Web, p.231–232. https://doi.org/10.1145/2487788.2487907
Lian DF, Wu YJ, Ge Y, et al., 2020. Geography-aware sequential location recommendation. Proc 26th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining, p.2009–2019. https://doi.org/10.1145/3394486.3403252
Liu Q, Wu S, Wang DY, et al., 2016a. Context-aware sequential recommendation. IEEE 16th Int Conf on Data Mining, p.1053–1058. https://doi.org/10.1109/ICDM.2016.0135
Liu Q, Wu S, Wang L, et al., 2016b. Predicting the next location: a recurrent model with spatial and temporal contexts. Proc 30th AAAI Conf on Artificial Intelligence, p.194–200. https://doi.org/10.1609/aaai.v30i1.9971
Liu YC, Liu CR, Liu B, et al., 2016. Unified point-of-interest recommendation with temporal interval assessment. Proc 22nd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.1015–1024. https://doi.org/10.1145/2939672.2939773
Luo YT, Liu Q, Liu ZC, 2021. STAN: spatio-temporal attention network for next location recommendation. Proc Web Conf, p.2177–2185. https://doi.org/10.1145/3442381.3449998
Mikolov T, Kombrink S, et al., 2011. Extensions of recurrent neural network language model. IEEE Int Conf Acoustics Speech and Signal Processing, p.5528–5531. https://doi.org/10.1109/ICASSP.2011.5947611
Qian TY, Liu B, Nguyen QVH, et al., 2019. Spatiotemporal representation learning for translation-based POI recommendation. ACM Trans Inform Syst, 37(2):1–24. https://doi.org/10.1145/3295499
Ren Z, Fang F, et al., 2022. State of the art in defect detection based on machine vision. Int J Precis Eng Manuf-Green Techn, 9(2):661–691. https://doi.org/10.1007/s40684-021-00343-6
Rendle S, Freudenthaler C, Schmidt-Thieme L, 2010. Factorizing personalized Markov chains for next-basket recommendation. Proc 19th Int Conf on World Wide Web, p.811–820. https://doi.org/10.1145/1772690.1772773
Salakhutdinov R, Mnih A, 2007. Probabilistic matrix factorization. Proc 20th Int Conf on Neural Information Processing Systems, p.1257–1264.
Si YL, Zhang FZ, Liu WY, 2019. An adaptive point-of-interest recommendation method for location-based social networks based on user activity and spatial features. Knowl-Based Syst, 163:267–282. https://doi.org/10.1016/j.knosys.2018.08.031
Sun K, Qian TY, Chen T, et al., 2020. Where to go next: modeling long- and short-term user preferences for point-of-interest recommendation. Proc 34th AAAI Conf on Artificial Intelligence, p.214–221. https://doi.org/10.1609/aaai.v34i01.5353
Wang HX, Fan W, Yu PS, et al., 2003. Mining concept-drifting data streams using ensemble classifiers. Proc 9th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.226–235. https://doi.org/10.1145/956750.956778
Wu YX, Li K, Zhao GS, et al., 2022. Personalized long- and short-term preference learning for next POI recommendation. IEEE Trans Knowl Data Eng, 34(4):1944–1957. https://doi.org/10.1109/TKDE.2020.3002531
Xu CH, Ding AS, Zhao KD, 2021. A novel POI recommendation method based on trust relationship and spatial-temporal factors. Electr Commer Res Appl, 48:101060. https://doi.org/10.1016/j.elerap.2021.101060
Xu S, Cao JX, Legg P, et al., 2020. Venue2Vec: an efficient embedding model for fine-grained user location prediction in geo-social networks. IEEE Syst J, 14(2):1740–1751. https://doi.org/10.1109/JSYST.2019.2913080
Yang C, Bai LX, Zhang C, et al., 2017. Bridging collaborative filtering and semi-supervised learning: a neural approach for POI recommendation. Proc 23rd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.1245–1254. https://doi.org/10.1145/3097983.3098094
Yang DQ, Zhang DQ, Zheng VW, et al., 2015. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Trans Syst Man Cybern Syst, 45(1):129–142. https://doi.org/10.1109/TSMC.2014.2327053
Yang DQ, Fankhauser B, Rosso P, et al., 2020. Location prediction over sparse user mobility traces using RNNs: flashback in hidden states! Proc 29th Int Joint Conf on Artificial Intelligence, p.2184–2190. https://doi.org/10.24963/ijcai.2020/302
Ye M, Yin PF, Lee WC, 2010. Location recommendation for location-based social networks. Proc 18th SIGSPATIAL Int Conf on Advances in Geographic Information Systems, p.458–461. https://doi.org/10.1145/1869790.1869861
Yin HZ, Wang WQ, Wang H, et al., 2017. Spatial-aware hierarchical collaborative deep learning for POI recommendation. IEEE Trans Knowl Data Eng, 29(11):2537–2551. https://doi.org/10.1109/TKDE.2017.2741484
Ying HC, Zhuang FZ, Zhang FZ, et al., 2018. Sequential recommender system based on hierarchical attention network. Proc 27th Int Joint Conf on Artificial Intelligence, p.3926–3932. https://doi.org/10.24963/ijcai.2018/546
Yuan Q, Cong G, Ma ZY, et al., 2013. Time-aware point-of-interest recommendation. Proc 36th Int ACM SIGIR Conf on Research and Development in Information Retrieval, p.363–372. https://doi.org/10.1145/2484028.2484030
Yuan Q, Cong G, Sun AX, 2014. Graph-based point-of-interest recommendation with geographical and temporal influences. Proc 23rd ACM Int Conf on Information and Knowledge Management, p.659–668. https://doi.org/10.1145/2661829.2661983
Zeng J, Tang HR, Zhao YZ, et al., 2021. PR-RCUC: a POI recommendation model using region-based collaborative filtering and user-based mobile context. Mobile Netw Appl, 26(6):2434–2444. https://doi.org/10.1007/s11036-021-01782-w
Zhang T, Zheng WM, Cui Z, et al., 2019. Spatial-temporal recurrent neural network for emotion recognition. IEEE Trans Cybern, 49(3):839–847. https://doi.org/10.1109/TCYB.2017.2788081
Zhao GS, Lou PL, Qian XM, et al., 2020. Personalized location recommendation by fusing sentimental and spatial context. Knowl-Based Syst, 196:105849. https://doi.org/10.1016/j.knosys.2020.105849
Zhao KZ, Zhang Y, Yin HZ, et al., 2020. Discovering subsequence patterns for next POI recommendation. Proc 29th Int Joint Conf on Artificial Intelligence, p.3216–3222. https://doi.org/10.24963/ijcai.2020/445
Zhao PP, Luo AJ, Liu YC, et al., 2022. Where to go next: a spatio-temporal gated network for next POI recommendation. IEEE Trans Knowl Data Eng, 34(5):2512–2524. https://doi.org/10.1109/TKDE.2020.3007194
Zhao SL, Zhao T, Yang HQ, et al., 2016. STELLAR: spatial-temporal latent ranking for successive point-of-interest recommendation. Proc 30th AAAI Conf on Artificial Intelligence, p.315–322. https://doi.org/10.1609/aaai.v30i1.9986
Zhao WX, Zhou NN, Sun AX, et al., 2018. A time-aware trajectory embedding model for next-location recommendation. Knowl Inform Syst, 56(3):559–579. https://doi.org/10.1007/s10115-017-1107-4
Author information
Authors and Affiliations
Contributions
Xi SUN and Zhimin LV designed the research and processed the data. Xi SUN drafted the paper. Zhimin LV helped organize the paper. Xi SUN and Zhimin LV revised and finalized the paper.
Corresponding author
Ethics declarations
Xi SUN and Zhimin LV declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Sun, X., Lv, Z. Exploring nonlinear spatiotemporal effects for personalized next point-of-interest recommendation. Front Inform Technol Electron Eng 24, 1273–1286 (2023). https://doi.org/10.1631/FITEE.2200304
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2200304
Key words
- Point-of-interest recommendation
- Spatiotemporal effects
- Long short-term memory (LSTM)
- Attention mechanism
关键词
CLC number
Profiles
- Zhimin Lv View author profile