摘要
文章提出一种应用于 X 频段和 Ku 频段卫星无线通信的带有滤波效应的新型宽带圆极化天线。该结构包含一个驱动层(同时也是滤波层)以及一个堆叠层(同时也是圆极化层)。带通滤波响应中的两个辐射零点,是衬底集成波导(SIW)腔体支持的开口与嵌入式驱动贴片的综合效果。引入倒角贴片作为堆叠元件,具有同时实现圆极化和拓宽工作带宽的能力。使用多层印制电路板(PCB)工艺制作了一个尺寸为 0.8λ0×0.71λ0×0.16λ0 的紧凑原型进行演示。实验结果与仿真结果吻合良好,测量的 −10-dB 阻抗带宽和 3-dB 轴比带宽分别为10.83% 和 15.54%。此外,还获得了 8.9 dBic 的左旋圆极化峰值增益,大于 7 dBic 的带内平均左旋圆极化增益,以及良好的频率选择性。
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Awida MH, Fathy AE, 2012. Design guidelines of substrate-integrated cavity-backed patch antennas. IET Microw Antenn Propag, 6(2):151–157. https://doi.org/10.1049/iet-map.2011.0376
Cao YF, Zhang Y, Zhang XY, 2020. Filtering antennas: from innovative concepts to industrial applications. Front Inform Technol Electron Eng, 21(1):116–127. https://doi.org/10.1631/FITEE.1900474
Cao YY, Guo ZJ, Hao ZC, 2022. Planar dual-polarized millimeter-wave shared-aperture array antenna with high band isolation. Front Inform Technol Electron Eng, 23(10):1568–1578. https://doi.org/10.1631/FITEE.2200122
Fan KK, Hao ZC, Yuan Q, 2017. A low-profile wideband substrate-integrated waveguide cavity-backed E-shaped patch antenna for the Q-LINKPAN applications. IEEE Trans Antenn Propag, 65(11):5667–5676. https://doi.org/10.1109/TAP.2017.2748181
Guan DF, Ding C, Qian ZP, et al., 2016. Broadband high-gain SIW cavity-backed circular-polarized array antenna. IEEE Trans Antenn Propag, 64(4):1493–1497. https://doi.org/10.1109/TAP.2016.2521904
Han BY, Yang MN, Wang JP, et al., 2019. A new design of a wideband low-profile monopole patch antenna based on SIW resonator. Proc IEEE MTT-S Int Microwave Biomedical Conf, p.1–3. https://doi.org/10.1109/IMBIOC.2019.8777928
Hu KZ, Tang MC, Li M, et al., 2018. Compact, low-profile, bandwidth-enhanced substrate integrated waveguide filtenna. IEEE Antenn Wirel Propag Lett, 17(8):1552–1556. https://doi.org/10.1109/LAWP.2018.2854898
Huang JQ, Qiu F, Lin W, et al., 2017. A new compact and high gain circularly-polarized slot antenna array for Ku-band mobile satellite TV reception. IEEE Access, 5:6707–6714. https://doi.org/10.1109/ACCESS.2017.2694229
Ji SS, Dong YD, Pan YS, et al., 2021. Planar circularly polarized antenna with bandpass filtering response based on dual-mode SIW cavity. IEEE Trans Antenn Propag, 69(6):3155–3164. https://doi.org/10.1109/TAP.2020.3037819
Jiang ZH, Werner DH, 2015. A compact, wideband circularly polarized co-designed filtering antenna and its application for wearable devices with low SAR. IEEE Trans Antenn Propag, 63(9):3808–3818. https://doi.org/10.1109/TAP.2015.2452942
Li TJ, Gong X, 2018. Vertical integration of high-Q filter with circularly polarized patch antenna with enhanced impedance-axial ratio bandwidth. IEEE Trans Microw Theory Techn, 66(6):3119–3128. https://doi.org/10.1109/TMTT.2018.2832073
Li Y, Chen ZN, Qing XM, et al., 2012. Axial ratio bandwidth enhancement of 60-GHz substrate integrated waveguidefed circularly polarized LTCC antenna array. IEEE Trans Antenn Propag, 60(10):4619–4626. https://doi.org/10.1109/TAP.2012.2207343
Lorente D, Limbach M, Esteban H, et al., 2020. Compact ultrawideband grounded coplanar waveguide to substrate integrated waveguide tapered V-slot transition. IEEE Microw Wirel Compon Lett, 30(12):1137–1140. https://doi.org/10.1109/LMWC.2020.3031025
Panagopoulos AD, Arapoglou PDM, Cottis PG, 2004. Satellite communications at KU, KA, and V bands: propagation impairments and mitigation techniques. IEEE Commun Surv Tut, 6(3):2–14. https://doi.org/10.1109/COMST.2004.5342290
Qi ZH, Li XP, Zhu H, 2021. Low-cost high-order-mode cavity backed slot array antenna using empty substrate integrated waveguide for the 5G n260 band. Front Inform Technol Electron Eng, 22(4):609–614. https://doi.org/10.1631/FITEE.2000503
Tang MC, Li DJ, Wang Y, et al., 2020. Compact, low-profile, linearly and circularly polarized filtennas enabled with custom-designed feed-probe structures. IEEE Trans Antenn Propag, 68(7):5247–5256. https://doi.org/10.1109/TAP.2020.2982504
Wang WW, Chen CH, Wang SY, et al., 2020. Circularly polarized patch antenna with filtering performance using polarization isolation and dispersive delay line. IEEE Antenn Wirel Propag Lett, 19(8):1457–1461. https://doi.org/10.1109/LAWP.2020.3005709
Wu QS, Zhang X, Zhu L, 2018. Co-design of a wideband circularly polarized filtering patch antenna with three minima in axial ratio response. IEEE Trans Antenn Propag, 66(10):5022–5030. https://doi.org/10.1109/TAP.2018.2856104
Author information
Authors and Affiliations
Contributions
Yitong YAO designed the research, processed the data, and drafted the paper. Gang DONG advised on the design process and helped organize the paper. Zhangming ZHU and Yintang YANG revised and finalized the paper.
Corresponding author
Additional information
Compliance with ethics guidelines
Yitong YAO, Gang DONG, Zhangming ZHU, and Yintang YANG declare that they have no conflict of interest.
Project supported by the National Natural Science Foundation of China (Nos. 62021004, 61934006, and 61574106) and the Cooperation Program of XDU-Chongqing IC Innovation Research Institute, China (No. CQIRI-2022CXY-Z05)
Rights and permissions
About this article
Cite this article
Yao, Y., Dong, G., Zhu, Z. et al. Stacked arrangement of substrate integrated waveguide cavity-backed semicircle patches for wideband circular polarization with filtering effect. Front Inform Technol Electron Eng 24, 759–766 (2023). https://doi.org/10.1631/FITEE.2200398
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2200398