摘要
精确的、与波长相关的相位调制在许多领域中是必不可少的, 比如超分辨成像、全彩色全息、微纳加工以及光通讯。这一要求很难通过单一的传统光学元件实现, 一般需要使用多个光学元件组合完成。本文提出一种可以实现波长选择性波前整形的超表面设计方法。具体来说, 本文设计了一种超表面, 它能够对785 nm波长的光做涡旋相位调制, 同时不影响590 nm波长的光保持原有相位分布。本文通过干涉仪以及对应点扩散函数的测量来验证不同波长下的波前分布。与已提出的空间复用方式以及色散工程的方法相比, 我们提出的设计方法更加直接, 优化难度小, 适用于需要波长选择性编码的光学系统。本文所提平面光学器件对于需要波长选择性编码的光学系统具有重要应用意义。
References
Arbabi E, Arbabi A, Kamali SM, et al., 2016. Multiwave-length metasurfaces through spatial multiplexing. Sci Rep, 6:32803. https://doi.org/10.1038/srep32803
Bao YJ, Yu Y, Xu HF, et al., 2019. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci Appl, 8:95. https://doi.org/10.1038/s41377-019-0206-2
Berry MV, 1987. The adiabatic phase and Pancharatnam’s phase for polarized light. J Mod Opt, 34(11):1401–1407. https://doi.org/10.1080/09500348714551321
Deng ZL, Cao YY, Li XP, et al., 2018. Multifunctional meta-surface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure. Photon Res, 6(5):443–450. https://doi.org/10.1364/prj.6.000443
Devlin RC, Khorasaninejad M, Chen WT, et al., 2016. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Nat Acad Sci USA, 113(38):10473–10478. https://doi.org/10.1073/pnas.1611740113
Feng H, Li QT, Wan WP, et al., 2019. Spin-switched three-dimensional full-color scenes based on a dielectric metahologram. ACS Photon, 6(11):2910–2916. https://doi.org/10.1021/acsphotonics.9b01017
Georgi P, Wei QS, Sain B, et al., 2021. Optical secret sharing with cascaded metasurface holography. Sci Adv, 7(16):eabf9718. https://doi.org/10.1126/sciadv.abf9718
Guo ZM, Liu HH, Xiang LN, et al., 2020. Generation of perfect vortex beams with polymer-based phase plate. IEEE Photon Technol Lett, 32(10):565–568. https://doi.org/10.1109/lpt.2020.2985745
Hao X, Allgeyer ES, Lee DR, et al., 2021. Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution. Nat Methods, 18(6):688–693. https://doi.org/10.1038/s41592-021-01149-9
He X, Liu YJ, Ganesan K, et al., 2020. A single sensor based multispectral imaging camera using a narrow spectral band color mosaic integrated on the monochrome CMOS image sensor. APL Photon, 5(4):046104. https://doi.org/10.1063/1.5140215
Hell SW, Wichmann J, 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19(11):780–782. https://doi.org/10.1364/ol.19.000780
Hu YF, Liu X, Jin MK, et al., 2021. Dielectric metasurface zone plate for the generation of focusing vortex beams. PhotoniX, 2(1):10. https://doi.org/10.1186/s43074-021-00035-z
Huang TY, Zhang DZ, Yoo S, et al., 2020. Reconfigurable multiwavelength fiber laser based on multimode interference in highly germanium-doped fiber. Appl Opt, 59(4):1163–1168. https://doi.org/10.1364/ao.383627
Ikezawa S, Yamada R, Takaki K, et al., 2022. Micro-optical line generator metalens for a visible wavelength based on octagonal nanopillars made of single-crystalline silicon. IEEE Sens J, 22(15):14851–14861. https://doi.org/10.1109/jsen.2022.3186060
Jesacher A, Bernet S, Ritsch-Marte M, 2014. Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range. Opt Expr, 22(14):17590–17599. https://doi.org/10.1364/oe.22.017590
Khorasaninejad M, Ambrosio A, Kanhaiya P, et al., 2016a. Broadband and chiral binary dielectric meta-holograms. Sci Adv, 2(5):e1501258. https://doi.org/10.1126/sciadv.1501258
Khorasaninejad M, Chen WT, Devlin RC, et al., 2016b. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352(6290):1190–1194. https://doi.org/10.1126/science.aaf6644
Li Y, Liu SJ, Sun DQ, et al., 2021. Single-layer multitasking vortex-metalens for ultra-compact two-photon excitation STED endomicroscopy imaging. Opt Expr, 29(3):3795–3807. https://doi.org/10.1364/oe.416698
Liu MZ, Zhu WQ, Huo PC, et al., 2021. Multifunctional meta-surfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci Appl, 10(1):107. https://doi.org/10.1038/s41377-021-00552-3
Liu X, Peng YF, Tu SJ, et al., 2021. Generation of arbitrary longitudinal polarization vortices by pupil function manipulation. Adv Photon Res, 2(1):2000087. https://doi.org/10.1002/adpr.202000087
Liu X, Tu SJ, Kuang CF, et al., 2022. Calibration of phase-only liquid-crystal spatial light modulators by diffractogram analysis. Opt Lasers Eng, 156:107056. https://doi.org/10.1016/j.optlaseng.2022.107056
Ma JQ, Li Y, Yu QZ, et al., 2018. Generation of high-quality tunable Airy beams with an adaptive deformable mirror. Opt Lett, 43(15):3634–3637. https://doi.org/10.1364/ol.43.003634
Maguid E, Yulevich I, Veksler D, et al., 2016. Photonic spin-controlled multifunctional shared-aperture antenna array. Science, 352(6290):1202–1206. https://doi.org/10.1126/science.aaf3417
Mirhosseini M, Magaña-Loaiza OS, O’Sullivan MN, et al., 2015. High-dimensional quantum cryptography with twisted light. New J Phys, 17(3):033033. https://doi.org/10.1088/1367-2630/17/3/033033
Mueller JPB, Rubin NA, Devlin RC, et al., 2017. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett, 118(11):113901. https://doi.org/10.1103/PhysRevLett.118.113901
Ouadghiri-Idrissi I, Giust R, Froehly L, et al., 2016. Arbitrary shaping of on-axis amplitude of femtosecond Bessel beams with a single phase-only spatial light modulator. Opt Expr, 24(11):11495–11504. https://doi.org/10.1364/oe.24.011495
Richards B, Wolf E, 1959. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc Roy Soc A Math Phys Eng Sci, 253(1274):358–379. https://doi.org/10.1098/rspa.1959.0200
Ruffato G, Massari M, Romanato F, 2014. Generation of high-order Laguerre–Gaussian modes by means of spiral phase plates. Opt Lett, 39(17):5094–5097. https://doi.org/10.1364/ol.39.005094
Sasaki H, Yamamoto K, Wakunami K, et al., 2014. Large size three-dimensional video by electronic holography using multiple spatial light modulators. Sci Rep, 4:6177. https://doi.org/10.1038/srep06177
Sell D, Yang JJ, Doshay S, et al., 2017. Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities. Adv Opt Mater, 5(23):1700645. https://doi.org/10.1002/adom.201700645
Shi ZJ, Khorasaninejad M, Huang YW, et al., 2018. Single-layer metasurface with controllable multiwavelength functions. Nano Lett, 18(4):2420–2427. https://doi.org/10.1021/acs.nanolett.7b05458
Shrestha S, Overvig AC, Lu M, et al., 2018. Broadband achromatic dielectric metalenses. Light Sci Appl, 7:85. https://doi.org/10.1038/s41377-018-0078-x
Spägele C, Tamagnone M, Kazakov D, et al., 2021. Multifunctional wide-angle optics and lasing based on supercell metasurfaces. Nat Commun, 12(1):3787. https://doi.org/10.1038/s41467-021-24071-2
Yang WH, Xiao SM, Song QH, et al., 2020. All-dielectric metasurface for high-performance structural color. Nat Commun, 11(1):1864. https://doi.org/10.1038/s41467-020-15773-0
Yu XM, Todi A, Tang HM, 2018. Bessel beam generation using a segmented deformable mirror. Appl Opt, 57(16):4677–4682. https://doi.org/10.1364/ao.57.004677
Zhang WY, Song HY, He X, et al., 2021. Deeply learned broadband encoding stochastic hyperspectral imaging. Light Sci Appl, 10(1):108. https://doi.org/10.1038/s41377-021-00545-2
Zhao MX, Chen MK, Zhuang ZP, et al., 2021. Phase characterisation of metalenses. Light Sci Appl, 10(1):52. https://doi.org/10.1038/s41377-021-00492-y
Zheng JY, He X, Beckett P, et al., 2021. Dichroic circular polarizers based on plasmonics for polarization imaging applications. Nanomaterials, 11(8):2145. https://doi.org/10.3390/nano11082145
Acknowledgements
We thank the Westlake Center for Micro/Nano Fabrication for facility support and technical assistance.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Project supported by the “Leading Goose” Research and Development Program of Zhejiang Province, China (No. 2022C01077), the National Key Research and Development Program of China (No. 2018YFA0701400), the National Natural Science Foundation of China (No. 92050115), the Zhejiang Provincial Natural Science Foundation of China (No. LZ21F050003), the Fundamental Research Funds for the Central Universities, China (No. 226-2022-00137), and the Zhejiang Postdoctoral Science Fund for Excellent Project (No. 511300-X82101)
Contributors
Zixin CAI, Xin HE, Xu LIU, and Xiang HAO designed the research. Zixin CAI and Xin HE processed the data, performed the theoretical analysis and the measurement of the sample, and drafted the paper. Aditya DUBEY, Arnan MITCHELL, and Guanghui REN fabricated the samples. Xin LIU, Shijie TU, Xinjie SUN, and Paul BECKETT helped organize the paper. Zixin CAI, Xin HE, and Xiang HAO revised and finalized the paper.
Compliance with ethics guidelines
Zixin CAI, Xin HE, Xin LIU, Shijie TU, Xinjie SUN, Paul BECKETT, Aditya DUBEY, Arnan MITCHELL, Guanghui REN, Xu LIU, and Xiang HAO declare that they have no conflict of interest.
Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
List of supplementary materials
1 Fabrication of the metasurface
2 Phase characterization with Mach–Zehnder interferometer
3 Point spread function characterization system
Fig. S1 Scheme of the interferometric setup used to characterize the phase distribution of the modulated beam Fig. S2 Scheme of the point spread function characterization system