摘要
本文提出一款在Ka波段产生高纯度涡旋波束的宽带圆极化透射阵. 为简化设计, 所提出的透射单元由两个相同的组合构成, 并用空气层将其隔开. 亚波长结构以及双谐振特性确保了透射单元在28.4%的1-dB透射带宽内具有稳定的相移能力. 基于此, 加工测试了一款由喇叭天线馈电的方形口径透射阵. 得益于蜂窝状布阵方式, 所设计的透射阵可在28.5 GHz到38 GHz的宽带范围中辐射l=–1且模态纯度高于0.93的涡旋波束. 测试的峰值增益为22.3 dBic, 3-dB轴比带宽为27.6%. 测试结果表明, 本文提出的透射阵有潜力应用于高容量无线通信和高质量雷达成像方面.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Akram MR, Bai XD, Jin RH, et al., 2019. Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves. IEEE Trans Antenn Propag, 67(7):4650–4658. https://doi.org/10.1109/TAP.2019.2905777
Akram MR, Ding GW, Chen K, et al., 2020. Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv Mater, 32(12):1907308. https://doi.org/10.1002/adma.201907308
Akram Z, Li XP, Qi ZH, et al., 2019. Wideband vortex beam reflectarray design using quarter-wavelength element. IEEE Antenn Wirel Propag Lett, 18(7):1458–1462. https://doi.org/10.1109/LAWP.2019.2919782
Allen L, Beijersbergen MW, Spreeuw RJC, et al., 1992. Orbital angular momentum of light and the transformation of Laguerre—Gaussian laser modes. Phys Rev A, 45(11):8185–8189. https://doi.org/10.1103/PhysRevA.45.8185
Bi F, Ba ZL, Wang X, 2018. Metasurface-based broadband orbital angular momentum generator in millimeter wave region. Opt Expr, 26(20):25693–25705. https://doi.org/10.1364/OE.26.025693
de Cos ME, Alvarez Y, Las-Heras F, 2011. Novel broadband artificial magnetic conductor with hexagonal unit cell. IEEE Antenn Wirel Propag Lett, 10:615–618. https://doi.org/10.1109/LAWP.2011.2159472
Huang HF, Li SN, 2019. High-efficiency planar reflectarray with small-size for OAM generation at microwave range. IEEE Antenn Wirel Propag Lett, 18(3):432–436. https://doi.org/10.1109/LAWP.2019.2893321
Huang YH, Li XP, Li QW, et al., 2019. Generation of broadband high-purity dual-mode OAM beams using a four-feed patch antenna: theory and implementation. Sci Rep, 9:12977. https://doi.org/10.1038/s41598-019-49377-6
Huang YH, Li XP, Akram Z, et al., 2021. Generation of millimeter-wave nondiffracting airy OAM beam using a single-layer hexagonal lattice reflectarray. IEEE Antenn Wirel Propag Lett, 20(6):1093–1097. https://doi.org/10.1109/LAWP.2021.3073144
Jiang ZH, Kang L, Hong W, et al., 2018. Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness. Phys Rev Appl, 9(6):064009. https://doi.org/10.1103/PhysRevApplied.9.064009
Li WW, Zhang L, Yang SY, et al., 2020. A reconfigurable second-order OAM patch antenna with simple structure. IEEE Antenn Wirel Propag Lett, 19(9):1531–1535. https://doi.org/10.1109/LAWP.2020.3008447
Lin ZS, Ba ZL, Wang X, 2020. Broadband high-efficiency electromagnetic orbital angular momentum beam generation based on a dielectric metasurface. IEEE Photon J, 12(3):4600611. https://doi.org/10.1109/JPHOT.2020.2991114
Liu HY, Liu K, Cheng YQ, et al., 2020. Microwave vortex imaging based on dual coupled OAM beams. IEEE Sens J, 20(2):806–815. https://doi.org/10.1109/JSEN.2019.2943698
Liu K, Cheng YQ, Yang ZC, et al., 2015. Orbital-angular-momentum-based electromagnetic vortex imaging. IEEE Antenn Wirel Propag Lett, 14:711–714. https://doi.org/10.1109/LAWP.2014.2376970
Ma JC, Song XY, Yao YC, et al., 2021. Research on the purity of orbital angular momentum beam generated by imperfect uniform circular array. IEEE Antenn Wirel Propag Lett, 20(6):968–972. https://doi.org/10.1109/LAWP.2021.3068287
Ran YZ, Cai T, Shi LH, et al., 2020. High-performance transmissive broadband vortex beam generator based on Pancharatnam—Berry metasurface. IEEE Access, 8:111802–111810. https://doi.org/10.1109/ACCESS.2020.3002547
Shahmirzadi AV, Badamchi Z, Badamchi B, et al., 2021. Generating concentrically embedded spatially divided OAM carrying vortex beams using transmitarrays. IEEE Trans Antenn Propag, 69(12):8436–8448. https://doi.org/10.1109/TAP.2021.3090860
Tamburini F, Mari E, Sponselli A, et al., 2012. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J Phys, 14(3):033001. https://doi.org/10.1088/1367-2630/14/3/033001
Veljovic MJ, Skrivervik AK, 2020. Circularly polarized transmitarray antenna for cubesat intersatellite links in K-band. IEEE Antenn Wirel Propag Lett, 19(10):1749–1753. https://doi.org/10.1109/LAWP.2020.3016340
Wang B, Liu WZ, Zhao MX, et al., 2020. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat Photon, 14(10):623–628. https://doi.org/10.1038/s41566-020-0658-1
Wu GB, Chan KF, Qu SW, et al., 2020. Orbital angular momentum (OAM) mode-reconfigurable discrete dielectric lens operating at 300 GHz. IEEE Trans Terahertz Sci Technol, 10(5):480–489. https://doi.org/10.1109/TTHZ.2020.2984451
Wu YH, Kang L, Werner DH, 2022. Active quasi-BIC optical vortex generators for ultrafast switching. New J Phys, 24(3):033002. https://doi.org/10.1088/1367-2630/ac52c0
Wu Z, Zhang WX, Liu ZG, et al., 2005. Reduction of feed blockage in reflectarray by orthogonally polarized transformation. IEEE Antennas and Propagation Society Int Symp, p.325–328. https://doi.org/10.1109/APS.2005.1552655
Xu HX, Liu HW, Ling XH, et al., 2017. Broadband vortex beam generation using multimode Pancharatnam—Berry metasurface. IEEE Trans Antenn Propag, 65(12):7378–7382. https://doi.org/10.1109/TAP.2017.2761548
Yan Y, Xie GD, Lavery MPJ, et al., 2014. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun, 5:4876. https://doi.org/10.1038/ncomms5876
Yao E, Franke-Arnold S, Courtial J, et al., 2006. Fourier relationship between angular position and optical orbital angular momentum. Opt Expr, 14(20):9071–9076. https://doi.org/10.1364/OE.14.009071
Zhang FH, Song Q, Yang GM, et al., 2019. Generation of wideband vortex beam with different OAM modes using third-order meta-frequency selective surface. Opt Expr, 27(24):34864–34875. https://doi.org/10.1364/OE.27.034864
Zhang FH, Yang GM, Jin YQ, 2020. Low-profile circularly polarized transmitarray for wide-angle beam control with a third-order meta-FSS. IEEE Trans Antenn Propag, 68(5):3586–3597. https://doi.org/10.1109/TAP.2020.2964957
Zhang XL, Yang F, Xu SH, et al., 2020. Dual-layer transmitarray antenna with high transmission efficiency. IEEE Trans Antenn Propag, 68(8):6003–6012. https://doi.org/10.1109/TAP.2020.2989555
Acknowledgements
The authors would like to thank the Beijing Engineering Research Center of Electro Magnetic Compatibility (EMC) and Antenna Test Technology for the measurement support.
Author information
Authors and Affiliations
Contributions
Liangjie QIU designed the research and performed the simulations. Liangjie QIU, Zihang QI, and Yuhan HUANG processed the data. Liangjie QIU drafted the paper. Xiuping LI and Wenyu ZHAO helped organize the paper. Liangjie QIU, Xiuping LI, Zihang QI, and Wenyu ZHAO revised and finalized the paper.
Corresponding author
Ethics declarations
Liangjie QIU, Xiuping LI, Zihang QI, Wenyu ZHAO, and Yuhan HUANG declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (No. 61971051)
Rights and permissions
About this article
Cite this article
Qiu, L., Li, X., Qi, Z. et al. Wideband circular-polarized transmitarray for generating a high-purity vortex beam. Front Inform Technol Electron Eng 24, 927–934 (2023). https://doi.org/10.1631/FITEE.2200539
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2200539