Abstract
Gas sensors have received extensive attention because of the gas pollution caused by rapid construction of urbanization and industrialization. Gas sensors based on semiconductor metal oxide (SMO) have the advantages of high response, excellent repeatability, stability, and cost-effectiveness, and have become extremely important components in the gas sensor field. Materials with regular structures and controllable morphology exhibit more consistent and repeatable performance. However, during the process of material synthesis, because of the uncontrollability of the microcosm, nanomaterials often show irregularities, unevenness, and other shortcomings. Thus, the synthesis of gas sensors with well-aligned one-dimensional (1D) structures, two-dimensional (2D) layered structures, and three-dimensional (3D) hierarchical structures has received extensive attention. To obtain regular structured nanomaterials with desired morphologies and dimensions, a template-assisted synthesis method with low cost and controllable process seems a very efficient strategy. In this review, we introduce the morphology and performance of SMO sensors with 1D, 2D, and 3D structures, discuss the impact of a variety of morphologies on gas sensor performance (response and stability), and shed new light on the synthesis of gas sensing materials with stable structure and excellent performance.
摘要
由于城市化和工业化的快速建设所带来的气体污染, 气体传感器受到广泛关注. 基于半导体金属氧化物(SMO)的气体传感器具有响应高、 重复性好、 稳定性好、 性价比高等优点, 已成为气体传感器领域极其重要的元器件. 通常, 具有规则结构和可控形态的材料表现出更稳定且可重复的性能. 然而, 由于微观世界的不可控性, 在材料合成过程中纳米材料往往表现出不规则、 不均匀等缺点. 因此, 具有规整结构的一维(1D)结构、 二维(2D)结构和三维(3D)结构的气敏材料的合成受到广泛关注. 为了定向获得具有理想形貌和尺寸的结构规整的纳米材料, 低成本且操作简洁可控的模板辅助合成法是一种非常有效的策略. 本文介绍了一维、 二维和三维结构的SMO传感器的形貌和性能, 讨论了各种形貌对气体传感器性能(响应和稳定性)的影响, 为结构稳定、 性能优异的气敏材料的合成提供了新的思路.
Similar content being viewed by others
References
Baek DH, Choi J, Kim J, 2019. Fabrication of suspended nanowires for highly sensitive gas sensing. Sens Actuat B Chem, 284:362–368. https://doi.org/10.1016/j.snb.2018.12.159
Bulemo PM, Cho HJ, Kim DH, et al., 2018. Facile synthesis of Pt-functionalized meso/macroporous SnO2 hollow spheres through in situ templating with SiO2 for H2S sensors. ACS Appl Mater Interfaces, 10(21):18183–18191. https://doi.org/10.1021/acsami.8b00901
Chen J, Feng DL, Wang C, et al., 2020. Gas sensor detecting 3-hydroxy-2-butanone biomarkers: boosted response via decorating Pd nanoparticles onto the {010} facets of BiVO4 decahedrons. ACS Sens, 5(8):2620–2627. https://doi.org/10.1021/acssensors.0c01149
Cheng PF, Lv L, Wang YL, et al., 2021. SnO2/ZnSnO3 double-shelled hollow microspheres based high-performance acetone gas sensor. Sens Actuat B Chem, 332:129212. https://doi.org/10.1016/j.snb.2020.129212
Escobedo P, Fernández-Ramos MD, López-Ruiz N, et al., 2022. Smart facemask for wireless CO2 monitoring. Nat Commun, 13(1):72. https://doi.org/10.1038/s41467-021-27733-3
Fei HF, Long YD, Yu HJ, et al., 2020. Bimodal mesoporous carbon spheres with small and ultra-large pores fabricated using amphiphilic brush block copolymer micelle templates. ACS Appl Mater Interfaces, 12(51):57322–57329. https://doi.org/10.1021/acsami.0c16566
Gao ZM, Wang TQ, Li XF, et al., 2020. Pd-decorated PdO hollow shells: a H2-sensing system in which catalyst nanoparticle and semiconductor support are interconvertible. ACS Appl Mater Interfaces, 12(38):42971–42981. https://doi.org/10.1021/acsami.0c13137
Giampiccolo A, Tobaldi DM, Leonardi SG, et al., 2019. Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2. Appl Catal B Environ, 243: 183–194. https://doi.org/10.1016/j.apcatb.2018.10.032
Guo LL, Zhang B, Yang XL, et al., 2021. Sensing platform of PdO−ZnO−In2O3 nanofibers using MOF templated catalysts for triethylamine detection. Sens Actuat B Chem, 343: 130126. https://doi.org/10.1016/j.snb.2021.130126
Hong SH, Song N, Jiang EH, et al., 2022. Nickel supported on nitrogen-doped biomass carbon fiber fabricated via in-situ template technology for pH-universal electrocatalytic hydrogen evolution. J Colloid Interface Sci, 608:1441–1448. https://doi.org/10.1016/j.jcis.2021.10.083
Hu CH, Yu LM, Li SL, et al., 2022. Sacrificial template triggered to synthesize hollow nanosheet-assembled Co3O4 microtubes for fast triethylamine detection. Sens Actuat B Chem, 355:131246. https://doi.org/10.1016/j.snb.2021.131246
Huang R, Zhu AM, Gong Y, et al., 2013. Facile method to prepare monodispersed hollow PtAu sphere with TiO2 colloidal sphere as a template. Ind Eng Chem Res, 52(22):7432–7438. https://doi.org/10.1021/ie400573c
Hung PS, Chou YS, Huang BH, et al., 2020. A vertically integrated ZnO-based hydrogen sensor with hierarchical bi-layered inverse opals. Sens Actuat B Chem, 325:128779. https://doi.org/10.1016/j.snb.2020.128779
Ivanova A, Frka-Petesic B, Paul A, et al., 2020. Cellulose nanocrystal-templated tin dioxide thin films for gas sensing. ACS Appl Mater Interfaces, 12(11):12639–12647. https://doi.org/10.1021/acsami.9b11891
Jang JS, Koo WT, Choi SJ, et al., 2017. Metal organic framework-templated chemiresistor: sensing type transition from P-to-N using hollow metal oxide polyhedron via galvanic replacement. J Am Chem Soc, 139(34):11868–11876. https://doi.org/10.1021/jacs.7b05246
Jo YK, Jeong SY, Moon YK, et al., 2021. Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor. Nat Commun, 12(1):4955. https://doi.org/10.1038/s41467-021-25290-3
Kim DH, Kim SJ, Shin H, et al., 2019. High-resolution, fast, and shape-conformable hydrogen sensor platform: polymer nanofiber yarn coupled with nanograined Pd@Pt. ACS Nano, 13(5):6071–6082. https://doi.org/10.1021/acsnano.9b02481
Kim DH, Cha JH, Lim JY, et al., 2020. Colorimetric dye-loaded nanofiber yarn: eye-readable and weavable gas sensing platform. ACS Nano, 14(12):16907–16918. https://doi.org/10.1021/acsnano.0c05916
Kim S, Singh G, Oh M, et al., 2021. An analysis of a highly sensitive and selective hydrogen gas sensor based on a 3D Cu-doped SnO2 sensing material by efficient electronic sensor interface. ACS Sens, 6(11):4145–4155. https://doi.org/10.1021/acssensors.1c01696
Koo WT, Cha JH, Jung JW, et al., 2018. Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors. Adv Funct Mater, 28(36):1802575. https://doi.org/10.1002/adfm.201802575
Li C, Qiao XK, Jian J, et al., 2019. Ordered porous BiVO4 based gas sensors with high selectivity and fast-response towards H2S. Chem Eng J, 375:121924. https://doi.org/10.1016/j.cej.2019.121924
Li HJ, Zhang N, Zhao XL, et al., 2020. Modulation of TEA and methanol gas sensing by ion-exchange based on a sacrificial template 3D diamond-shaped MOF. Sens Actuat B Chem, 315:128136. https://doi.org/10.1016/j.snb.2020.128136
Li L, Tan JF, Dun MH, et al., 2017. Porous ZnFe2O4 nanorods with net-worked nanostructure for highly sensor response and fast response acetone gas sensor. Sens Actuat B Chem, 248:85–91. https://doi.org/10.1016/j.snb.2017.03.119
Li Q, Wu JB, Huang L, et al., 2018. Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes. J Mater Chem A, 6(25):12115–12124. https://doi.org/10.1039/c8ta02036a
Li RF, Qi H, Ma Y, et al., 2020. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat Commun, 11(1):3207. https://doi.org/10.1038/s41467-020-17008-8
Li Z, Zhang Y, Zhang H, et al., 2020. Superior NO2 sensing of MOF-derived indium-doped ZnO porous hollow cages. ACS Appl Mater Interfaces, 12(33):37489–37498. https://doi.org/10.1021/acsami.0c10420
Li Z, Zhang Y, Zhang H, et al., 2021. MOF-derived Au-loaded Co3O4 porous hollow nanocages for acetone detection. Sens Actuat B Chem, 344:130182. https://doi.org/10.1016/j.snb.2021.130182
Liang ZB, Qu C, Zhou WY, et al., 2019. Synergistic effect of Co−Ni hybrid phosphide nanocages for ultrahigh capacity fast energy storage. Adv Sci, 6(8):1802005. https://doi.org/10.1002/advs.201802005
Lin LS, Yang XY, Zhou ZJ, et al., 2017. Yolk-shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic-plasmonic hybrid theranostic platform. Adv Mater, 29(21):1606681. https://doi.org/10.1002/adma.201606681
Liu W, Xu L, Sheng K, et al., 2018. A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection. NPG Asia Mater, 10(4):293–308. https://doi.org/10.1038/s41427-018-0029-2
Liu WX, Sun JB, Li YN, et al., 2023. Low-temperature and high-selectivity butanone sensor based on porous Fe2O3 nanosheets synthesized by phoenix tree leaf template. Sens Actuat B Chem, 377:133054. https://doi.org/10.1016/j.snb.2022.133054
Liu XJ, Duan XP, Zhang C, et al., 2022. Improvement toluene detection of gas sensors based on flower-like porous indium oxide nanosheets. J Alloys Compd, 897:163222. https://doi.org/10.1016/j.jallcom.2021.163222
Lu JJ, Liu DP, Zhou JC, et al., 2017. Porous organic field-effect transistors for enhanced chemical sensing performances. Adv Funct Mater, 27(20):1700018. https://doi.org/10.1002/adfm.201700018
Luong HM, Pham MT, Guin T, et al., 2021. Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. Nat Commun, 12(1):2414. https://doi.org/10.1038/s41467-021-22697-w
Lv L, Cheng PF, Wang YL, et al., 2020. Sb-doped three-dimensional ZnFe2O4 macroporous spheres for N-butanol chemiresistive gas sensors. Sens Actuat B Chem, 320: 128384. https://doi.org/10.1016/j.snb.2020.128384
Ma JW, Fan HQ, Zhang WM, et al., 2020. High sensitivity and ultra-low detection limit of chlorine gas sensor based on In2O3 nanosheets by a simple template method. Sens Actuat B Chem, 305:127456. https://doi.org/10.1016/j.snb.2019.127456
Masoumi S, Shokrani M, Aghili S, et al., 2019. Zinc oxide-based direct thermoelectric gas sensor for the detection of volatile organic compounds in air. Sens Actuat B Chem, 294:245–252. https://doi.org/10.1016/j.snb.2019.05.063
Na HB, Zhang XF, Zhang M, et al., 2019a. A fast response/recovery ppb-level H2S gas sensor based on porous CuO/ZnO heterostructural tubule via confined effect of absorbent cotton. Sens Actuat B Chem, 297:126816. https://doi.org/10.1016/j.snb.2019.126816
Na HB, Zhang XF, Deng ZP, et al., 2019b. Large-scale synthesis of hierarchically porous ZnO hollow tubule for fast response to ppb-level H2S gas. ACS Appl Mater Interfaces, 11(12):11627–11635. https://doi.org/10.1021/acsami.9b00173
Nasir ME, Dickson W, Wurtz GA, et al., 2014. Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials. Adv Mater, 26(21):3532–3537. https://doi.org/10.1002/adma.201305958
Ogbeide O, Bae G, Yu WB, et al., 2022. Inkjet-printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv Funct Mater, 32(25):2113348. https://doi.org/10.1002/adfm.202113348
Park SW, Jeong SY, Yoon JW, et al., 2020. General strategy for designing highly selective gas-sensing nanoreactors: morphological control of SnO2 hollow spheres and configurational tuning of Au catalysts. ACS Appl Mater Interfaces, 12(46):51607–51615. https://doi.org/10.1021/acsami.0c13760
Sabri YM, Kandjani AE, Rashid SSAAH, et al., 2018. Soot template TiO2 fractals as a photoactive gas sensor for acetone detection. Sens Actuat B Chem, 275:215–222. https://doi.org/10.1016/j.snb.2018.08.059
Sanger A, Kang SB, Jeong MH, et al., 2018. Morphology-controlled aluminum-doped zinc oxide nanofibers for highly sensitive NO2 sensors with full recovery at room temperature. Adv Sci, 5(9):1800816. https://doi.org/10.1002/advs.201800816
Seo MH, Kang K, Yoo JY, et al., 2020. Chemo-mechanically operating palladium-polymer nanograting film for a self-powered H2 gas sensor. ACS Nano, 14(12):16813–16822. https://doi.org/10.1021/acsnano.0c05476
Sharma B, Sharma A, Myung JH, 2021. Selective ppb-level NO2 gas sensor based on SnO2-boron nitride nanotubes. Sens Actuat B Chem, 331:129464 https://doi.org/10.1016/j.snb.2021.129464
Shin H, Lee WJ, 2016. Multi-shelled MgCo2O4 hollow microspheres as anodes for lithium ion batteries. J Mater Chem A, 4(31):12263–12272. https://doi.org/10.1039/c6ta03959f
Shin H, Kim DH, Jung W, et al., 2021. Surface activity-tuned metal oxide chemiresistor: toward direct and quantitative halitosis diagnosis. ACS Nano, 15(9):14207–14217. https://doi.org/10.1021/acsnano.1c01350
Sun ZQ, Liao T, Dou YH, et al., 2014. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat Commun, 5:3813. https://doi.org/10.1038/ncomms4813
Tammanoon N, Iwamoto T, Ueda T, et al., 2020. Synergistic effects of PdOx−CuOx loadings on methyl mercaptan sensing of porous WO3 microspheres prepared by ultrasonic spray pyrolysis. ACS Appl Mater Interfaces, 12(37): 41728–41739. https://doi.org/10.1021/acsami.0c10462
Tan CL, Zhang H, 2015. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat Commun, 6:7873. https://doi.org/10.1038/ncomms8873
Teng Y, Zhang XF, Xu TT, et al., 2020. A spendable gas sensor with higher sensitivity and lowest detection limit towards H2S: porous α-Fe2O3 hierarchical tubule derived from poplar branch. Chem Eng J, 392:123679. https://doi.org/10.1016/j.cej.2019.123679
Tie Y, Ma SY, Pei ST, et al., 2020. Pr doped BiFeO3 hollow nanofibers via electrospinning method as a formaldehyde sensor. Sens Actuat B Chem, 308:127689. https://doi.org/10.1016/j.snb.2020.127689
Wang H, Luo YY, Li K, et al., 2022. Porous α-Fe2O3 gas sensor with instantaneous attenuated response toward triethyl-amine and its reaction kinetics. Chem Eng J, 427:131631. https://doi.org/10.1016/j.cej.2021.131631
Wang L, Sun LY, Bian FK, et al., 2022. Self-bonded hydrogel inverse opal particles as sprayed flexible patch for wound healing. ACS Nano, 16(2):2640–2650. https://doi.org/10.1021/acsnano.1c09388
Wang Q, Wu HC, Wang YR, et al., 2021. Ex-situ XPS analysis of yolk-shell Sb2O3/WO3 for ultra-fast acetone resistive sensor. J Hazard Mater, 412:125175. https://doi.org/10.1016/j.jhazmat.2021.125175
Wang TS, Jiang B, Yu Q, et al., 2019. Realizing the control of electronic energy level structure and gas-sensing selectivity over heteroatom-doped In2O3 spheres with an inverse opal microstructure. ACS Appl Mater Interfaces, 11(9):9600–9611. https://doi.org/10.1021/acsami.8b21543
Wen ZY, Ren HB, Li DX, et al., 2023. A highly efficient acetone gas sensor based on 2D porous ZnFe2O4 nanosheets. Sens Actuat B Chem, 379:133287. https://doi.org/10.1016/j.snb.2023.133287
Wu YY, Song BY, Zhang XF, et al., 2021. Microtubular α-Fe2O3/Fe2(MoO4)3 heterostructure derived from absorbent cotton for enhanced ppb-level H2S gas-sensing performance. J Alloys Compd, 867:158994. https://doi.org/10.1016/jjallcom.2021.158994
Xia Y, Zhou LX, Yang J, et al., 2020. Highly sensitive and fast optoelectronic room-temperature NO2 gas sensor based on ZnO nanorod-assembled macro-/mesoporous film. ACS Appl Electron Mater, 2(2):580–589. https://doi.org/10.1021/acsaelm.9b00810
Xie WH, Ren Y, Yu BJ, et al., 2021. Self-hybrid transition metal oxide nanosheets synthesized by a facile programmable and scalable carbonate-template method. Small, 17(39): 2103176. https://doi.org/10.1002/smll.202103176
Xiong Y, Zhu ZY, Ding DG, et al., 2018. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor. Appl Surf Sci, 443:114–121. https://doi.org/10.1016/j.apsusc.2018.02.189
Xu SP, Sun FQ, Gu FL, et al., 2014. Photochemistry-based method for the fabrication of SnO2 monolayer ordered porous films with size-tunable surface pores for direct application in resistive-type gas sensor. ACS Appl Mater Interfaces, 6(2):1251–1257. https://doi.org/10.1021/am4050844
Xue MQ, Li FW, Chen D, et al., 2016. High-oriented polypyrrole nanotubes for next-generation gas sensor. Adv Mater, 28(37):8265–8270. https://doi.org/10.1002/adma.201602302
Yang JQ, Han WJ, Ma J, et al., 2021. Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection. Sens Actuat B Chem, 340:129971. https://doi.org/10.1016/j.snb.2021.129971
Yang S, Sun J, Xu L, et al., 2020. Au@ZnO functionalized three-dimensional macroporous WO3: a application of selective H2S gas sensor for exhaled breath biomarker detection. Sens Actuat B Chem, 324:128725. https://doi.org/10.1016/j.snb.2020.128725
Yang XY, Shi YT, Xie KF, et al., 2022. Cocrystallization enabled spatial self-confinement approach to synthesize crystalline porous metal oxide nanosheets for gas sensing. Angew Chem Int Ed, 61(37):e202207816. https://doi.org/10.1002/anie.202207816
Yao Y, Yin ML, Yan JQ, et al., 2017. Controllable synthesis of Ag-WO3 core-shell nanospheres for light-enhanced gas sensors. Sens Actuat B Chem, 251:583–589. https://doi.org/10.1016/j.snb.2017.05.007
Yi SY, Song YG, Park JY, et al., 2019. Morphological evolution induced through a heterojunction of W-decorated NiO nanoigloos: synergistic effect on high-performance gas sensors. ACS Appl Mater Interfaces, 11(7):7529–7538. https://doi.org/10.1021/acsami.8b18678
Yuan HY, Aljneibi SAAA, Yuan JR, et al., 2019. ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv Mater, 31(11): 1807161. https://doi.org/10.1002/adma.201807161
Yuan KP, Wang CY, Zhu LY, et al., 2020. Fabrication of a microelectromechanical system-based acetone gas sensor using CeO2 nanodot-decorated WO3 nanowires. ACS Appl Mater Interfaces, 12(12):14095–14104. https://doi.org/10.1021/acsami.9b18863
Zeng G, Wu C, Chang Y, et al., 2019. Detection and discrimination of volatile organic compounds using a single film bulk acoustic wave resonator with temperature modulation as a multiparameter virtual sensor array. ACS Sens, 4(6): 1524–1533. https://doi.org/10.1021/acssensors.8b01678
Zeng QR, Feng JT, Lin XC, et al., 2020. One-step facile synthesis of a NiO/ZnO biomorphic nanocomposite using a poplar tree leaf template to generate an enhanced gas sensing platform to detect n-butanol. J Alloys Compd, 815:150550. https://doi.org/10.1016/j.jallcom.2019.05.018
Zhang B, Sun JY, Gao PX, 2021. Low-concentration NOx gas analysis using single bimodular ZnO nanorod sensor. ACS Sens, 6(8):2979–2987. https://doi.org/10.1021/acssensors.1c00834
Zhang LH, Dong B, Xu L, et al., 2017. Three-dimensional ordered ZnO-Fe3O4 inverse opal gas sensor toward trace concentration acetone detection. Sens Actuat B Chem, 252:367–374. https://doi.org/10.1016/j.snb.2017.05.167
Zhang XM, Dong ZJ, Liu SR, et al., 2017. Maize straw-templated hierarchical porous ZnO: Ni with enhanced acetone gas sensing properties. Sens Actuat B Chem, 243:1224–1230. https://doi.org/10.1016/j.snb.2016.12.076
Zhao C, Zhou AW, Dou YB, et al., 2021. Dual MOFs template-directed fabrication of hollow-structured heterojunction photocatalysts for efficient CO2 reduction. Chem Eng J, 416:129155. https://doi.org/10.1016/j.cej.2021.129155
Zhao RJ, Zhang X, Peng SJ, et al., 2020. Shaddock peels as bio-templates synthesis of Cd-doped SnO2 nanofibers: a high performance formaldehyde sensing material. J Alloys Compd, 813:152170. https://doi.org/10.1016/j.jallcom.2019.152170
Zheng XZ, Zhang Z, Meng SG, et al., 2020. Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting. Chem Eng J, 393:124676. https://doi.org/10.1016/j.cej.2020.124676
Zheng YY, Wang LQ, Tian HW, et al., 2021. Bimetal carbonaceous templates for multi-shelled NiCo2O4 hollow sphere with enhanced xylene detection. Sens Actuat B Chem, 339: 129862. https://doi.org/10.1016/j.snb.2021.129862
Zhu XQ, Li J, Ali RN, et al., 2018. Toward a high-performance Li-ion battery: constructing a Co1−xS/ZnS@C composite derived from metal-organic framework @3D disordered polystyrene sphere template. Mater Des, 160:636–641. https://doi.org/10.1016/j.matdes.2018.10.011
Author information
Authors and Affiliations
Contributions
Yuanyang XUN summarized the review. Feiyu ZHANG and Yan HONG drafted the paper. Ke XU and Ligang CHEN helped organize the paper. Siqi LI, Song LIU, and Bin LI revised and finalized the paper.
Corresponding author
Ethics declarations
Yuanyang XUN, Siqi LI, Feiyu ZHANG, Yan HONG, Ke XU, Ligang CHEN, Song LIU, and Bin LI declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (No. 62001097), the Natural Science Foundation of Heilongjiang Province (No. LH2020F001), the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST) (No. YESS20210262), the China Postdoctoral Science Foundation-Funded Project (No. 2021M690571), the Heilongjiang Postdoctoral Fund, China (No. LBH-Z21096), and the Fundamental Research Funds for the Central Universities, China (No. 2572020BU04)
List of supplementary materials
1 Fundamentals of semiconductor metal oxide (SMO) gas sensors
2 Some main points in template-assisted synthesis
3 3D materials prepared using plant polyphenols as a template
Table S1 Summary of nanomaterials for gas sensing using plant polyphenols as a template
Fig. S1 Sensing mechanism
Fig. S2 Sample characterization
Rights and permissions
About this article
Cite this article
Xun, Y., Li, S., Zhang, F. et al. Rational design of semiconductor metal oxide nanomaterials for gas sensing by template-assisted synthesis: a survey. Front Inform Technol Electron Eng 24, 945–963 (2023). https://doi.org/10.1631/FITEE.2200552
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2200552