Abstract
In this paper, the problem of controllability of Boolean control networks (BCNs) with multiple time delays in both states and controls is investigated. First, the controllability problem of BCNs with multiple time delays in controls is considered. For this controllability problem, a controllability matrix is constructed by defining a new product of matrices, based on which a necessary and sufficient controllability condition is obtained. Then, the controllability of BCNs with multiple time delays in states is studied by giving a necessary and sufficient condition. Subsequently, based on these results, a controllability matrix for BCNs with multiple time delays in both states and controls is proposed that provides a concise controllability condition. Finally, two examples are given to illustrate the main results.
摘要
本文研究状态和控制均具有多时滞的布尔控制网络可控性问题. 首先, 考虑控制具有多时滞的布尔控制网络可控性问题. 对于该问题, 本文通过定义一个新的矩阵乘积构建系统的可控性矩阵, 基于该矩阵, 得到一个系统可控的充分必要条件. 其次, 研究状态具有多时滞的布尔控制网络可控性问题, 提出一个状态具有多时滞的布尔控制网络可控的充分必要条件. 然后, 提出一个状态和控制均具有多时滞的布尔控制网络可控性矩阵, 利用该矩阵, 提供一个简洁的可控性条件. 最后, 给出2个例子说明得到的理论结果.
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Acernese A, Yerudkar A, Glielmo L, et al., 2021. Reinforcement learning approach to feedback stabilization problem of probabilistic Boolean control networks. IEEE Contr Syst Lett, 5(1):337–342. https://doi.org/10.1109/LCSYS.2020.3001993
Albert R, Othmer HG, 2003. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J Theor Biol, 223(1):1–18. https://doi.org/10.1016/s0022-5193(03)00035-3
Chaves M, Albert R, Sontag ED, 2005. Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol, 235(3):431–449. https://doi.org/10.1016/j.jtbi.2005.01.023
Chen H, Sun JT, 2013. A new approach for global controllability of higher order Boolean control network. Neur Netw, 39:12–17. https://doi.org/10.1016/j.neunet.2012.12.004
Chen HW, Liang JL, Lu JQ, et al., 2018. Synchronization for the realization-dependent probabilistic Boolean networks. IEEE Trans Neur Netw Learn Syst, 29(4):819–831. https://doi.org/10.1109/TNNLS.2017.2647989
Cheng DZ, Qi HS, 2009. Controllability and observability of Boolean control networks. Automatica, 45(7):1659–1667. https://doi.org/10.1016/j.automatica.2009.03.006
Cheng DZ, Qi HS, 2010. A linear representation of dynamics of Boolean networks. IEEE Trans Autom Contr, 55(10):2251–2258. https://doi.org/10.1109/TAC.2010.2043294
Cheng DZ, Qi HS, Li ZQ, 2011. Analysis and Control of Boolean Networks: a Semi-Tensor Product Approach. Springer, London, UK. https://doi.org/10.1007/978-0-85729-097-7
Cui P, Zhang CH, Zhang HS, et al., 2009. Indefinite linear quadratic optimal control problem for singular discrete-time system with multiple input delays. Automatica, 45(10):2458–2461. https://doi.org/10.1016/j.automatica.2009.06.018
Dauer JP, Gahl RD, 1977. Controllability of nonlinear delay systems. J Optim Theory Appl, 21(1):59–70. https://doi.org/10.1007/BF00932544
Ding Y, Xie D, Guo YQ, 2018. Controllability of Boolean control networks with multiple time delays. IEEE Trans Contr Netw Syst, 5(4):1787–1795. https://doi.org/10.1109/TCNS.2017.2763744
Feng JE, Li YL, Fu SH, et al., 2022. New method for disturbance decoupling of Boolean networks. IEEE Trans Autom Contr, 67(9):4794–4800. https://doi.org/10.1109/TAC.2022.3161609
Fornasini E, Valcher ME, 2013. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Autom Contr, 58(6):1390–1401. https://doi.org/10.1109/TAC.2012.2231592
Fornasini E, Valcher ME, 2014. Optimal control of Boolean control networks. IEEE Trans Autom Contr, 59(5):1258–1270. https://doi.org/10.1109/TAC.2013.2294821
Gao SH, Sun CK, Xiang C, et al., 2022. Finite-horizon optimal control of Boolean control networks: a unified graph-theoretical approach. IEEE Trans Neur Netw Learn Syst, 33(1):157–171. https://doi.org/10.1109/TNNLS.2020.3027599
Guo YQ, Shen YW, Gui WH, 2021. Asymptotical stability of logic dynamical systems with random impulsive disturbances. IEEE Trans Autom Contr, 66(2):513–525. https://doi.org/10.1109/TAC.2020.2985302
Han M, Liu Y, Tu YS, 2014. Controllability of Boolean control networks with time delays both in states and inputs. Neurocomputing, 129:467–475. https://doi.org/10.1016/j.neucom.2013.09.012
Kauffman SA, 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437–467. https://doi.org/10.1016/0022-5193(69)90015-0
Klamka J, 2019. Stochastic controllability of systems with multiple delays in control. Int J Appl Math Comput Sci, 19(1):39–48. https://doi.org/10.2478/v10006-009-0003-9
Klmat S, Saez-Rodriguez J, Lindquist JA, 2006. A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform, 7:56. https://doi.org/10.1186/1471-2105-7-56
Li FF, Sun JT, 2011. Controllability of Boolean control networks with time delays in states. Automatica, 47(3):603–607. https://doi.org/10.1016/j.automatica.2011.01.040
Li FF, Sun JT, 2012. Controllability of higher order Boolean control networks. Appl Math Comput, 219(1):158–169. https://doi.org/10.1016/j.amc.2012.05.059
Li FF, Sun JT, Wu QD, 2011. Observability of Boolean control networks with state time delays. IEEE Trans Neur Netw, 22(6):948–954. https://doi.org/10.1109/TNN.2011.2126594
Li HT, Xie LH, Wang YZ, 2017. Output regulation of Boolean control networks. IEEE Trans Autom Contr, 62(6):2993–2998. https://doi.org/10.1109/TAC.2016.2606600
Li HT, Yang XR, Wang SL, 2021. Robustness for stability and stabilization of Boolean networks with stochastic function perturbations. IEEE Trans Autom Contr, 66(3):1231–1237. https://doi.org/10.1109/TAC.2020.2997282
Li R, Yang M, Chu TG, 2012. Synchronization of Boolean networks with time delays. Appl Math Comput, 219(3):917–927. https://doi.org/10.1016/j.amc.2012.06.071
Li R, Yang M, Chu TG, 2013. State feedback stabilization for Boolean control networks. IEEE Trans Autom Contr, 58(7):1853–1857. https://doi.org/10.1109/TAC.2013.2238092
Li YF, Zhu JD, 2020. Cascading decomposition of Boolean control networks: a graph-theoretical method. Front Inform Technol Electron Eng, 21(2):304–315. https://doi.org/10.1631/FITEE.1900422
Li YF, Zhu JD, 2022. Necessary and sufficient vertex partition conditions for input-output decoupling of Boolean control networks. Automatica, 137:110097. https://doi.org/10.1016/j.automatica.2021.110097
Li YF, Zhu JD, 2023. Observability decomposition of Boolean control networks. IEEE Trans Autom Contr, 68(2):1267–1274. https://doi.org/10.1109/TAC.2022.3149970
Li YF, Zhu JD, Li BW, et al., 2021. A necessary and sufficient graphic condition for the original disturbance decoupling of Boolean networks. IEEE Trans Autom Contr, 66(8):3765–3772. https://doi.org/10.1109/TAC.2020.3025507
Liang JL, Chen HW, Lam J, 2017. An improved criterion for controllability of Boolean control networks. IEEE Trans Autom Contr, 62(11):6012–6018. https://doi.org/10.1109/TAC.2017.2702008
Liu Y, Zhao SW, 2011. Controllability for a class of linear time-varying impulsive systems with time delay in control input. IEEE Trans Autom Contr, 56(2):395–399. https://doi.org/10.1109/TAC.2010.2088811
Lu JQ, Zhong J, Ho DWC, et al., 2016. On controllability of delayed Boolean control networks. SIAM J Contr Optim, 54(2):475–494. https://doi.org/10.1137/140991820
Shen YW, Guo YQ, Gui WH, 2021. Stability of Boolean networks with state-dependent random impulses. Front Inform Technol Electron Eng, 22(2):222–231. https://doi.org/10.1631/FITEE.1900454
Wang WQ, Zhong SM, 2012. Delay-dependent stability criteria for genetic regulatory networks with time-varying delays and nonlinear disturbance. Commun Nonl Sci Numer Simul, 17(9):3597–3611. https://doi.org/10.1016/j.cnsns.2011.12.024
Wang ZD, Gao HJ, Cao JD, et al., 2018. On delayed genetic regulatory networks with polytopic uncertainties: robust stability analysis. IEEE Trans Nanobiosci, 7(2):154–163. https://doi.org/10.1109/TNB.2008.2000746
Weiss E, Margaliot M, 2019. A polynomial-time algorithm for solving the minimal observability problem in conjunctive Boolean networks. IEEE Trans Autom Contr, 64(7):2727–2736. https://doi.org/10.1109/TAC.2018.2882154
Wu YH, Guo YQ, Toyoda M, 2021. Policy iteration approach to the infinite horizon average optimal control of probabilistic Boolean networks. IEEE Trans Neur Netw Learn Syst, 32(7):2910–2924. https://doi.org/10.1109/TNNLS.2020.3008960
Yang P, Xie GM, Wang L, 2009. Controllability of linear discrete-time systems with time-delay in state and control. Int J Contr, 82:1288–1296.
Zhang LJ, Zhang KZ, 2013. Controllability and observability of Boolean control networks with time-variant delays in states. IEEE Trans Neur Netw Learn Syst, 24(9):1478–1484. https://doi.org/10.1109/TNNLS.2013.2246187
Zhang X, Meng M, Wang YH, et al., 2021. Criteria for observability and reconstructibility of Boolean control networks via set controllability. IEEE Trans Circ Syst II, 68(4):1263–1267. https://doi.org/10.1109/TCSII.2020.3021190
Zhao Y, Qi HS, Cheng DZ, 2010. Input-state incidence matrix of Boolean control networks and its applications. Syst Contr Lett, 59(12):767–774. https://doi.org/10.1016/j.sysconle.2010.09.002
Zheng YT, Feng JE, 2020. Output tracking of delayed logical control networks with multi-constraint. Front Inform Technol Electron Eng, 21(2):316–323. https://doi.org/10.1631/FITEE.1900376
Zhong J, Lu JQ, Liu Y, et al., 2014. Synchronization in an array of output-coupled Boolean networks with time delay. IEEE Trans Neur Netw Learn Syst, 25(12):2288–2294.
Zhong J, Li BW, Liu Y, et al., 2020. Output feedback stabilizer design of Boolean networks based on network structure. Front Inform Technol Electron Eng, 21(2):247–259. https://doi.org/10.1631/FITEE.1900229
Zhou RP, Guo YQ, Gui WH, 2019. Set reachability and observability of probabilistic Boolean networks. Automatica, 106:230–241. https://doi.org/10.1016/j.automatica.2019.05.021
Zhu QX, Gao ZG, Liu Y, et al., 2021. Categorization problem on controllability of Boolean control networks. IEEE Trans Autom Contr, 66(5):2297–2303. https://doi.org/10.1109/TAC.2020.3002509
Zou YL, Zhu JD, 2015. Kalman decomposition for Boolean control networks. Automatica, 54:65–71. https://doi.org/10.1016/j.automatica.2015.01.023
Author information
Authors and Affiliations
Contributions
Yifeng LI designed the research and drafted the paper. Lan WANG helped organize the paper. Yifeng LI and Lan WANG revised and finalized the paper.
Corresponding author
Ethics declarations
Yifeng LI and Lan WANG declare that they have no conflict of interest.
Additional information
Project supported by the Natural Science Foundation of Chongqing, China (No. CSTB2022NSCQ-MSX2869), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (No. KJQN202200524), the Research Project of National Center for Applied Mathematics in Chongqing, China (No. ncamc2022-msxm05), and the Program of Chongqing Normal University, China (No. 21XLB045)
Rights and permissions
About this article
Cite this article
Li, Y., Wang, L. Controllability of Boolean control networks with multiple time delays in both states and controls. Front Inform Technol Electron Eng 24, 906–915 (2023). https://doi.org/10.1631/FITEE.2200618
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2200618