Abstract
This research investigates the digital-to-analog converter (DAC) free architecture for the digital reconfigurable intelligent surface (RIS) system, where the transmission lines are implemented for reflection coefficient (RC) control to reduce power consumption. In the proposed architecture, the radio frequency (RF) switch based phase shifter is considered. By using a single-pole four-throw (SP4T) switch to simultaneously control the RCs of a group of elements, a 2-bit phase shifter is realized for passive beam steering. A novel modulation scheme is developed to explore the cost effectiveness, which approaches the performance of traditional quadrature amplitude modulation (QAM). Specifically, to overcome the limitation of the phase shift bits, joint frequency-shift and phase-rotation operations are applied to the constellation points. The simulation and experimental results demonstrate that the proposed architecture is capable of providing an ideal transmission performance. Moreover, 64- and 256-QAM modulation schemes could be implemented by expanding the elements and phase bits.
摘要
本文研究用于数字可重构智能超表面系统的新型免数模转换架构. 其中, 微带传输线被用于反射系数控制, 从而降低系统功耗. 在所提架构中, 每个单刀4掷开关同时控制一组元件的反射系数以实现2位移相器. 为进一步降低成本, 提出一种新型调制方案, 该方案能获得接近传统正交幅度调制方案的性能. 为了突破相移位数的限制, 联合使用频移与相位旋转获得更多的星座点. 仿真结果和实验结果表明, 所提架构能够获得理想的传输性能. 进一步地, 可通过扩展智能超表面单元数量以及相移比特, 可实现64-QAM和256-QAM等高阶调制方案.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Basar E, 2019. Transmission through large intelligent surfaces: a new frontier in wireless communications. European Conf on Networks and Communications, p.112–117. https://doi.org/10.1109/EuCNC.2019.8801961
Chen DX, Yang WC, Che WQ, et al., 2022. Miniaturized wideband metasurface antennas using cross-layer capacitive loading. IEEE Antenn Wirel Propag Lett, 21(1):19–23. https://doi.org/10.1109/LAWP.2021.3115356
Chen J, Liang YC, Cheng HV, et al., 2023. Channel estimation for reconfigurable intelligent surface aided multiuser MIMO systems. IEEE Trans Wirel Commun, 22(10):6853–6869. https://doi.org/10.1109/TWC.2023.3246264
Chen MZ, Tang WK, Dai JY, et al., 2022. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface. Nat Sci Rev, 9(1):nwab134. https://doi.org/10.1093/nsr/nwab134
Cui TJ, Liu S, Zhang L, 2017. Information metamaterials and metasurfaces. J Mater Chem C, 5(15):3644–3668. https://doi.org/10.1039/C7TC00548B
Dai JY, Tang WK, Zhao J, et al., 2019. Wireless communications through a simplified architecture based on time-domain digital coding metasurface. Adv Mater Technol, 4(7):1900044. https://doi.org/10.1002/admt.201900044
Dai JY, Tang WK, Chen MZ, et al., 2021. Wireless communication based on information metasurfaces. IEEE Trans Microw Theory Tech, 69(3):1493–1510. https://doi.org/10.1109/TMTT.2021.3054662
Di BY, Zhang HL, Song LY, et al., 2020. Hybrid beamforming for reconfigurable intelligent surface based multiuser communications: achievable rates with limited discrete phase shifts. IEEE J Sel Areas Commun, 38(8):1809–1822. https://doi.org/10.1109/JSAC.2020.3000813
Du GH, Wang DD, Sun XF, et al., 2021. Design of a reflective metasurface for near-field focusing. IEEE Int Symp on Antennas and Propagation and USNC-URSI Radio Science Meeting, p.323–324. https://doi.org/10.1109/APS/URSI47566.2021.9704107
ElMossallamy MA, Zhang HL, Song LY, et al., 2020. Reconfigurable intelligent surfaces for wireless communications: principles, challenges, and opportunities. IEEE Trans Cogn Commun Netw, 6(3):990–1002. https://doi.org/10.1109/TCCN.2020.2992604
Gao X, Yang WL, Ma HF, et al., 2018. A reconfigurable broadband polarization converter based on an active metasurface. IEEE Trans Antenn Propag, 66(11):6086–6095. https://doi.org/10.1109/TAP.2018.2866636
Hu S, Rusek F, Edfors O, 2018. Beyond massive MIMO: the potential of data transmission with large intelligent surfaces. IEEE Trans Signal Process, 66(10):2746–2758. https://doi.org/10.1109/TSP.2018.2816577
Kundu NK, Mckay MR, 2021. Large intelligent surfaces with channel estimation overhead: achievable rate and optimal configuration. IEEE Wire Commun Lett, 10(5):986–990. https://doi.org/10.1109/LWC.2021.3053593
Liu F, Guo JY, Zhao LY, et al., 2020. Dual-band metasurface-based decoupling method for two closely packed dual-band antennas. IEEE Trans Antenn Propag, 68(1):552–557. https://doi.org/10.1109/tap.2019.2940316
Liu YW, Liu X, Mu XD, et al., 2021. Reconfigurable intelligent surfaces: principles and opportunities. IEEE Commun Surv Tut, 23(3):1546–1577. https://doi.org/10.1109/COMST.2021.3077737
Lou Q, Chen ZN, 2021. Sidelobe suppression of metalens antenna by amplitude and phase controllable metasurfaces. IEEE Trans Antenn Propag, 69(10):6977–6981. https://doi.org/10.1109/TAP.2021.3076312
Luo JS, Wang FG, Wang SL, et al., 2021. Reconfigurable intelligent surface: reflection design against passive eavesdropping. IEEE Trans Wirel Commun, 20(5):3350–3364. https://doi.org/10.1109/TWC.2021.3049312
Minatti G, Faenzi M, Martini E, et al., 2015. Modulated metasurface antennas for space: synthesis, analysis and realizations. IEEE Trans Antenn Propag, 63(4):1288–1300. https://doi.org/10.1109/TAP.2014.2377718
Nguyen NT, Vu QD, Lee K, et al., 2021. Spectral efficiency optimization for hybrid relay-reflecting intelligent surface. IEEE Int Conf on Communications Workshops, p.1–6.
Rajabalipanah H, Abdolali A, Iqbal S, et al., 2021. Analog signal processing through space-time digital metasurfaces. Nanophotonics, 10(6):1753–1764. https://doi.org/10.1515/nanoph-2021-0006
Sanchez JR, Rusek F, Edfors O, et al., 2019. An iterative interference cancellation algorithm for large intelligent surfaces. http://export.arxiv.org/abs/1911.10804
Sanusi OM, Wang Y, Roy L, 2022. Reconfigurable polarization converter using liquid metal based metasurface. IEEE Trans Antenn Propag, 70(4):2801–2810. https://doi.org/10.1109/TAP.2021.3137217
Taha A, Alrabeiah M, Alkhateeb A, 2021. Enabling large intelligent surfaces with compressive sensing and deep learning. IEEE Access, 9:44304–44321. https://doi.org/10.1109/ACCESS.2021.3064073
Tang WK, Dai JY, Chen MZ, et al., 2019. Programmable metasurface-based RF chain-free 8PSK wireless transmitter. Electron Lett, 55(7):417–420. https://doi.org/10.1049/el.2019.0400
Varamini G, Keshtkar A, Naser-Moghadasi M, 2018. Miniaturization of microstrip loop antenna for wireless applications based on metamaterial metasurface. AEU Int J Electron Commun, 83:32–39. https://doi.org/10.1016/j.aeue.2017.08.024
Wan ZW, Gao Z, Gao FF, et al., 2021. Terahertz massive MIMO with holographic reconfigurable intelligent surfaces. IEEE Trans Commun, 69(7):4732–4750. https://doi.org/10.1109/TCOMM.2021.3064949
Ying KK, Gao Z, Lyu S, et al., 2020. GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO. IEEE Access, 8:19530–19539. https://doi.org/10.1109/ACCESS.2020.2968456
Yuan XJ, Zhang YJA, Shi YM, et al., 2021. Reconfigurable-intelligent-surface empowered wireless communications: challenges and opportunities. IEEE Wirel Commun, 28(2):136–143. https://doi.org/10.1109/MWC.001.2000256
Zeng SH, Zhang HL, Di BY, et al., 2021. Reconfigurable intelligent surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization. IEEE Commun Lett, 25(1):269–273. https://doi.org/10.1109/LCOMM.2020.3025345
Zhang L, Chen XQ, Liu S, et al., 2018. Space-time-coding digital metasurfaces. Nat Commun, 9(1):4334. https://doi.org/10.1038/s41467-018-06802-0
Zhang XG, Sun YL, Zhu BC, et al., 2022. A metasurface-based light-to-microwave transmitter for hybrid wireless communications. Light Sci Appl, 11(1):126. https://doi.org/10.1038/S41377-022-00817-5
Zheng Q, Guo CJ, Ding J, 2018. Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion. IEEE Antenn Wirel Propag Lett, 17(8):1459–1463. https://doi.org/10.1109/LAWP.2018.2849352
Author information
Authors and Affiliations
Contributions
Miaoran PENG designed the research. Miaoran PENG and Jinhao KAN processed the data. Miaoran PENG drafted the paper. Lixia XIAO, Guanghua LIU, and Jinhao KAN helped organize the paper. Miaoran PENG, Lixia XIAO, Guanghua LIU, and Tao JIANG revised and finalized the paper.
Corresponding authors
Ethics declarations
Miaoran PENG, Jinhao KAN, Lixia XIAO, Guanghua LIU, and Tao JIANG declare that they have no conflict of interest.
Additional information
Project supported by the National Key R&D Program of China (No. 2019YFB1803400)
Rights and permissions
About this article
Cite this article
Peng, M., Kan, J., Xiao, L. et al. Digital-to-analog converter free architecture for digital reconfigurable intelligent surface. Front Inform Technol Electron Eng 24, 1752–1762 (2023). https://doi.org/10.1631/FITEE.2300133
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2300133