Abstract
Orthogonal time–frequency space (OTFS) is a new modulation technique proposed in recent years for high Doppler wireless scenes. To solve the parameter estimation problem of the OTFS-integrated radar and communications system, we propose a parameter estimation method based on sparse reconstruction preprocessing to reduce the computational effort of the traditional weighted subspace fitting (WSF) algorithm. First, an OTFS-integrated echo signal model is constructed. Then, the echo signal is transformed to the time domain to separate the target angle from the range, and the range and angle of the detected target are coarsely estimated by using the sparse reconstruction algorithm. Finally, the WSF algorithm is used to refine the search with the coarse estimate at the center to obtain an accurate estimate. The simulations demonstrate the effectiveness and superiority of the proposed parameter estimation algorithm.
摘要
正交时频空间(orthogonal time–frequency space, OTFS)是近年来针对高多普勒无线场景提出的一种新的调制技术. 针对OTFS雷达通信一体化系统的参数估计问题, 本文提出一种基于稀疏重构预处理的参数估计方法, 以降低传统加权子空间拟合(weighted subspace fitting, WSF)算法的计算量. 首先, 构建了OTFS一体化回波信号模型. 然后, 对回波信号进行时域变换, 将目标角度与距离分离, 利用稀疏重建算法对检测目标的距离和角度进行粗估计. 最后, 利用WSF算法以粗估计为中心对搜索进行细化, 得到准确的估计. 仿真实验证明了所提参数估计算法的有效性和优越性.
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Dokhanchi SH, Mysore BS, Mishra KV, et al., 2019. A mmWave automotive joint radar-communications system. IEEE Trans Aerosp Electron Syst, 55(3):1241–1260. https://doi.org/10.1109/taes.2019.2899797
Farhang A, RezazadehReyhani A, Doyle LE, et al., 2018. Low complexity modem structure for OFDM-based orthogonal time frequency space modulation. IEEE Wirel Commun Lett, 7(3):344–347. https://doi.org/10.1109/lwc.2017.2776942
Franken GEA, Nikookar H, van Genderen P, 2006. Doppler tolerance of OFDM-coded radar signals. European Radar Conf, p.108–111. https://doi.org/10.1109/EURAD.2006.280285
Gaudio L, Kobayashi M, Caire G, et al., 2020a. On the effectiveness of OTFS for joint radar parameter estimation and communication. IEEE Trans Wirel Commun, 19(9):5951–5965. https://doi.org/10.1109/twc.2020.2998583
Gaudio L, Kobayashi M, Caire G, et al., 2020b. Joint radar target detection and parameter estimation with MIMO OTFS. IEEE Radar Conf, p.1–6. https://doi.org/10.1109/RadarConf2043947.2020.9266546
Hadani R, Rakib S, Tsatsanis M, et al., 2017a. Orthogonal time frequency space modulation. IEEE Wireless Communications and Networking Conf, p.1–6. https://doi.org/10.1109/WCNC.2017.7925924
Hadani R, Rakib S, Molisch AF, et al., 2017b. Orthogonal time frequency space (OTFS) modulation for millimeter-wave communications systems. IEEE MTT-S Int Microwave Symp, p.681–683. https://doi.org/10.1109/MWSYM.2017.8058662
Hakobyan G, Yang B, 2018. A novel intercarrier-interference free signal processing scheme for OFDM radar. IEEE Trans Veh Technol, 67(6):5158–5167. https://doi.org/10.1109/tvt.2017.2723868
Hassanien A, Amin MG, Aboutanios E, et al., 2019. Dual-function radar communication systems: a solution to the spectrum congestion problem. IEEE Signal Process Mag, 36(5):115–126. https://doi.org/10.1109/msp.2019.2900571
Keskin MF, Wymeersch H, Alvarado A, 2021. Radar sensing with OTFS: embracing ISI and ICI to surpass the ambiguity barrier. IEEE Int Conf on Communications Workshops, p.1–6. https://doi.org/10.1109/ICCWorkshops50388.2021.9473534
Li SY, Yuan WJ, Liu C, et al., 2022. A novel ISAC transmission framework based on spatially-spread orthogonal time frequency space modulation. IEEE J Sel Areas Commun, 40(6): 1854–1872. https://doi.org/10.1109/jsac.2022.3155538
Li YC, Wang XD, Ding ZG, 2020. Multi-target position and velocity estimation using OFDM communication signals. IEEE Trans Commun, 68(2):1160–1174. https://doi.org/10.1109/tcomm.2019.2956928
Liu CW, Liu SH, Mao ZH, et al., 2021. Low-complexity parameter learning for OTFS modulation based automotive radar. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.8208–8212. https://doi.org/10.1109/ICASSP39728.2021.9414107
Ottersten B, Viberg M, Kailath T, 1992. Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data. IEEE Trans Signal Process, 40(3):590–600. https://doi.org/10.1109/78.120802
Ottersten B, Viberg M, Stoica P, et al., 1993. Exact and large sample maximum likelihood techniques for parameter estimation and detection in array processing. In: Haykin S, Litva J, Shepherd TJ (Eds.), Radar Array Processing. Springer, Berlin, p.99–151. https://doi.org/10.1007/978-3-642-77347-1_4
Patole SM, Torlak M, Wang D, et al., 2017. Automotive radars: a review of signal processing techniques. IEEE Signal Process Mag, 34(2):22–35. https://doi.org/10.1109/msp.2016.2628914
Rahman ML, Zhang JA, Huang XJ, et al., 2020. Joint communication and radar sensing in 5G mobile network by compressive sensing. IET Commun, 14(22):3977–3988. https://doi.org/10.1049/iet-com.2020.0384
Raviteja P, Phan KT, Hong Y, et al., 2019a. Orthogonal time frequency space (OTFS) modulation based radar system. IEEE Radar Conf, p.1–6. https://doi.org/10.1109/RADAR.2019.8835764
Raviteja P, Hong Y, Viterbo E, et al., 2019b. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS. IEEE Trans Veh Technol, 68(1):957–961. https://doi.org/10.1109/TVT.2018.2878891
Sanson JB, Tomé PM, Castanheira D, et al., 2020. High-resolution delay-Doppler estimation using received communication signals for OFDM radar-communication system. IEEE Trans Veh Technol, 69(11):13112–13123. https://doi.org/10.1109/tvt.2020.3021338
Shi WT, Zhang QF, He CB, et al., 2019. Taylor expansion MUSIC method for joint DOD and DOA estimation in a bistatic MIMO array. Front Inform Technol Electron Eng, 20(6):842–848. https://doi.org/10.1631/FITEE.1700657
Surabhi GD, Ramachandran MK, Chockalingam A, 2019a. OTFS modulation with phase noise in mmWave communications. IEEE 89th Vehicular Technology Conf, p.1–5. https://doi.org/10.1109/VTCSpring.2019.8746382
Surabhi GD, Augustine RM, Chockalingam A, 2019b. Peak-to-average power ratio of OTFS modulation. IEEE Commun Lett, 23(6):999–1002. https://doi.org/10.1109/lcomm.2019.2914042
Wang XJ, Zhang ZK, Najafabadi HE, 2021. Joint range and velocity estimation for integration of radar and communication based on multi-symbol OFDM radar pulses. IET Radar Sonar Navig, 15(5):533–545. https://doi.org/10.1049/rsn2.12071
Xue JR, Wang D, Du SY, et al., 2017. A vision-centered multisensor fusing approach to self-localization and obstacle perception for robotic cars. Front Inform Technol Electron Eng, 18(1):122–138. https://doi.org/10.1631/FITEE.1601873
Yan JK, Pu WQ, Zhou SH, et al., 2020. Collaborative detection and power allocation framework for target tracking in multiple radar system. Inform Fus, 55:173–183. https://doi.org/10.1016/j.inffus.2019.08.010
Zhang FQ, Zhang ZH, Yu WX, et al., 2020. Joint range and velocity estimation with intrapulse and intersubcarrier Doppler effects for OFDM-based RadCom systems. IEEE Trans Signal Process, 68:662–675. https://doi.org/10.1109/tsp.2020.2965820
Zhang ZK, Najafabadi HE, Jin B, 2021. Transmit array resource allocation for radar and communication integration system. Measurement, 173:108595. https://doi.org/10.1016/j.measurement.2020.108595
Zheng L, Wang XD, 2017. Super-resolution delay-Doppler estimation for OFDM passive radar. IEEE Trans Signal Process, 65(9):2197–2210. https://doi.org/10.1109/tsp.2017.2659650
Zheng L, Lops M, Eldar YC, et al., 2019. Radar and communication coexistence: an overview: a review of recent methods. IEEE Signal Process Mag, 36(5):85–99. https://doi.org/10.1109/msp.2019.2907329
Author information
Authors and Affiliations
Contributions
Zhenkai ZHANG designed the research. All the authors performed the simulations. Xiaoke SHANG and Yue XIAO drafted the paper. Zhenkai ZHANG revised the paper. All the authors read and approved the final version.
Corresponding author
Ethics declarations
All the authors declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (No. 61871203) and the Postgraduate Scientific Research and Innovation Projects of Jiangsu Province, China (No. KYCX23_3878)
Rights and permissions
About this article
Cite this article
Zhang, Z., Shang, X. & Xiao, Y. Target parameter estimation for OTFS-integrated radar and communications based on sparse reconstruction preprocessing. Front Inform Technol Electron Eng 25, 742–754 (2024). https://doi.org/10.1631/FITEE.2300462
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2300462
Key words
- Integrated radar and communications system
- Orthogonal time–frequency space
- Target parameter estimation
- Sparse reconstruction
- Weighted subspace fitting