Abstract
Joint Photographic Experts Group (JPEG) format is extensively used for images in many practical applications due to its excellent compression ratio and satisfactory image quality. Considering compelling concerns about the invasion of privacy, this paper proposes an effective reversible data hiding scheme for encrypted JPEG bitstreams, to provide security and privacy for both secret messages and valuable carriers. First, a format-compatibility and file size preserving encryption algorithm is applied to encipher the plaintext JPEG image into a noise-like version. Then, we present an effective reversible data hiding scheme in encrypted JPEG bitstreams using adaptive RZL rotation, where the secret messages are concealed with the sequence of RZL pairs. When the authorized user receives the marked encrypted JPEG bitstreams, the error-free extraction of secret messages and the lossless recovery of the original plaintext JPEG image can be accomplished separately. Extensive experiments are conducted to show that, compared to some state-of-the-art schemes, the proposed scheme has a superior performance in terms of embedding capacity, while keeping file size preservation and format compatibility.
摘要
JPEG图像因具有出色的压缩比和图像品质被广泛应用于实际案例。考虑到人们对其隐私侵犯的担忧, 本文提出了一种有效的加密JPEG比特流可逆信息隐藏方案, 旨在为秘密消息和载体提供安全和隐私。首先, 采用一种具有格式兼容性和文件大小保留性的加密算法将明文JPEG图像加密为类噪声版本。然后, 构建一种基于自适应RZL旋转策略的加密JPEG比特流可逆数据隐藏技术, 该技术将秘密消息映射到有序的RZL对序列。授权用户可以从标记的加密JPEG比特流中实现无差错的秘密消息提取并无损恢复原始明文JPEG图像。大量实验表明, 与一些最先进的方案相比, 本文方案在嵌入容量方面具有较好性能, 同时兼具文件大小保留性和格式兼容性。
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Bai YQ, Jiang GY, Zhu ZJ, et al., 2021. Reversible data hiding scheme for high dynamic range images based on multiple prediction error expansion. Signal Process Image Commun, 91:116084. https://doi.org/10.1016/j.image.2020.116084
Chang CC, Li CT, 2019. Algebraic secret sharing using privacy homomorphisms for IoT-based healthcare systems. Math Biosci Eng, 16(5):3367–3381. https://doi.org/10.3934/mbe.2019168
Chang CC, Li CT, Shi YQ, 2018. Privacy-aware reversible watermarking in cloud computing environments. IEEE Access, 6:70720–70733. https://doi.org/10.1109/ACCESS.2018.2880904
Chang CC, Li CT, Chen KM, 2019. Privacy-preserving reversible information hiding based on arithmetic of quadratic residues. IEEE Access, 7:54117–54132. https://doi.org/10.1109/ACCESS.2019.2908924
Chang JC, Lu YZ, Wu HL, 2017. A separable reversible data hiding scheme for encrypted JPEG bitstreams. Signal Process, 133:135–143. https://doi.org/10.1016/j.sigpro.2016.11.003
Chuman T, Sirichotedumrong W, Kiya H, 2019. Encryption-then-compression systems using grayscale-based image encryption for JPEG images. IEEE Trans Inform Forens Secur, 14(6):1515–1525. https://doi.org/10.1109/TIFS.2018.2881677
He JH, Huang SH, Tang SH, et al., 2018. JPEG image encryption with improved format compatibility and file size preservation. IEEE Trans Multimed, 20(10):2645–2658. https://doi.org/10.1109/TMM.2018.2817065
He JH, Chen JX, Luo WQ, et al., 2019. A novel high-capacity reversible data hiding scheme for encrypted JPEG bit-streams. IEEE Trans Circ Syst Video Technol, 29(12):3501–3515. https://doi.org/10.1109/TCSVT.2018.2882850
He JH, Chen JX, Tang SH, 2020. Reversible data hiding in JPEG images based on negative influence models. IEEE Trans Inform Forens Secur, 15:2121–2133. https://doi.org/10.1109/TIFS.2019.2958758
He WG, Xiong GQ, Weng SW, et al., 2018. Reversible data hiding using multi-pass pixel-value-ordering and pairwise prediction-error expansion. Inform Sci, 467:784–799. https://doi.org/10.1016/j.ins.2018.04.088
Hua ZY, Zhou YC, Huang HJ, et al., 2019. Cosine-transform-based chaotic system for image encryption. Inform Sci, 480:403–419. https://doi.org/10.1016/j.ins.2018.12.048
Hua ZY, Wang ZY, Zheng YF, et al., 2023. Enabling large-capacity reversible data hiding over encrypted JPEG bit-streams. IEEE Trans Circ Syst Video Technol, 33(3):1003–1018. https://doi.org/10.1109/TCSVT.2022.3208030
Huang DL, Wang JJ, 2020. High-capacity reversible data hiding in encrypted image based on specific encryption process. Signal Process Image Commun, 80:115632. https://doi.org/10.1016/j.image.2019.115632
Huang FJ, Qu XC, Kim HJ, 2015. Reversible data hiding in JPEG images. IEEE Trans Circ Syst Video Technol, 26(9): 1610–1621. https://doi.org/10.1109/TCSVT.2015.2473235
Interantional Telecommunication Union, 1992. Information Technology—Digital Compression and Coding of Continuous-Tone Still Images—Requirements and Guidelines. Recommendation T.81, ITU.
Li XL, Li B, Yang B, et al., 2013. General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process, 22(6):2181–2191. https://doi.org/10.1109/TIP.2013.2246179
Ma KD, Zhang WM, Zhao XF, et al., 2013. Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans Inform Forens Secur, 8(3):553–562. https://doi.org/10.1109/TIFS.2013.2248725
Mohammadi A, Nakhkash M, Akhaee MA, 2020. A high-capacity reversible data hiding in encrypted images employing local difference predictor. IEEE Trans Circ Syst Video Technol, 30(8):2366–2376. https://doi.org/10.1109/TCSVT.2020.2990952
Ni ZC, Shi YQ, Ansari N, et al., 2006. Reversible data hiding. IEEE Trans Circ Syst Video Technol, 16(3):354–362. https://doi.org/10.1109/TCSVT.2006.869964
Ou B, Li XL, Zhao Y, et al., 2013. Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process, 22(12):5010–5021. https://doi.org/10.1109/TIP.2013.2281422
Pareek NK, Patidar V, Sud KK, 2006. Image encryption using chaotic logistic map. Image Vis Comput, 24(9):926–934. https://doi.org/10.1016/j.imavis.2006.02.021
Peng F, Zhao Y, Zhang X, et al., 2020. Reversible data hiding based on RSBEMD coding and adaptive multi-segment left and right histogram shifting. Signal Process Image Commun, 81:115715. https://doi.org/10.1016/j.image.2019.115715
Puteaux P, Puech W, 2018. An efficient MSB prediction-based method for high-capacity reversible data hiding in encrypted images. IEEE Trans Inform Forens Secur, 13(7): 1670–1681. https://doi.org/10.1109/TIFS.2018.2799381
Puteaux P, Wang ZC, Zhang XP, et al., 2021. Hierarchical high capacity data hiding in JPEG crypto-compressed images. Proc 28th European Signal Process Conf, p.725–729. https://doi.org/10.23919/Eusipco47968.2020.9287376
Qi KL, Zhang MQ, Di FQ, et al., 2023. High capacity reversible data hiding in encrypted images based on adaptive quadtree partitioning and MSB prediction. Front Inform Technol Electron Eng, 24(8):1156–1168. https://doi.org/10.1631/FITEE.2200501
Qian ZX, Zhang XP, Wang SZ, 2014. Reversible data hiding in encrypted JPEG bitstream. IEEE Trans Multimed, 16(5): 1486–1491. https://doi.org/10.1109/TMM.2014.2316154
Qian ZX, Zhou H, Zhang XP, et al., 2018. Separable reversible data hiding in encrypted JPEG bitstreams. IEEE Trans Depend Secur Comput, 15(6):1055–1067. https://doi.org/10.1109/TDSC.2016.2634161
Qian ZX, Xu HS, Luo XY, et al., 2019. New framework of reversible data hiding in encrypted JPEG bitstreams. IEEE Trans Circ Syst Video Technol, 29(2):351–362. https://doi.org/10.1109/TCSVT.2018.2797897
Qin C, Hu YC, 2016. Reversible data hiding in VQ index table with lossless coding and adaptive switching mechanism. Signal Process, 129:48–55. https://doi.org/10.1016/j.sigpro.2016.05.032
Qin C, Zhang W, Cao F, et al., 2018. Separable reversible data hiding in encrypted images via adaptive embedding strategy with block selection. Signal Process, 153:109–122. https://doi.org/10.1016/j.sigpro.2018.07.008
Qiu YQ, Qian ZX, Zeng HQ, et al., 2020. Reversible data hiding in encrypted images using adaptive reversible integer transformation. Signal Process, 167:107288. https://doi.org/10.1016/j.sigpro.2019.107288
Rabbani M, Joshi R, 2002. An overview of the JPEG 2000 still image compression standard. Signal Process Image Commun, 17(1):3–48. https://doi.org/10.1016/S0923-5965(01)00024-8
Su GD, Chang CC, 2023. Toward high-capacity crypto-domain reversible data hiding with Huffman-based lossless image coding. Vis Comput, 39(10):4623–4638. https://doi.org/10.1007/s00371-022-02613-z
Su GD, Chang CC, Lin CC, 2019. A square lattice oriented reversible information hiding scheme with reversibility and adaptivity for dual images. J Vis Commun Image R, 64: 102618. https://doi.org/10.1016/j.jvcir.2019.102618
Su GD, Chang CC, Lin CC, et al., 2023. Towards property-preserving JPEG encryption with structured permutation and adaptive group differentiation. Vis Comput, 40: 6421–6447. https://doi.org/10.1007/s00371-023-03174-5
Tian J, 2003. Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol, 13(8): 890–896. https://doi.org/10.1109/TCSVT.2003.815962
Wang WQ, Ye JY, Wang TQ, et al., 2017. Reversible data hiding scheme based on significant-bit-difference expansion. IET Image Process, 11(11):1002–1014. https://doi.org/10.1049/iet-ipr.2017.0151
Wu HT, Cheung YM, Yang ZY, et al., 2019. A high-capacity reversible data hiding method for homomorphic encrypted images. J Visual Commun Image Represent, 62:87–96. https://doi.org/10.1016/j.jvcir.2019.04.015
Xiao D, Wang Y, Xiang T, et al., 2017. High-payload completely reversible data hiding in encrypted images by an interpolation technique. Front Inform Technol Electron Eng, 18(11): 1732–1743. https://doi.org/10.1631/FITEE.1601067
Xie EY, Li CQ, Yu SM, et al., 2017. On the cryptanalysis of Fridrich’s chaotic image encryption scheme. Signal Process, 132:150–154. https://doi.org/10.1016/j.sigpro.2016.10.002
Yi S, Zhou YC, Hua ZY, 2018. Reversible data hiding in encrypted images using adaptive block-level prediction-error expansion. Signal Process Image Commun, 64:78–88. https://doi.org/10.1016/j.image.2018.03.001
Ying QC, Qian ZX, Zhang XP, et al., 2019. Reversible data hiding with image enhancement using histogram shifting. IEEE Access, 7:46506–46521. https://doi.org/10.1109/ACCESS.2019.2909560
Yuan Y, He HJ, Chen F, et al., 2023. Reversible data hiding in encrypted JPEG image with changing the number of AC codes. Multimed Tools Appl, 82(28):43649–43669. https://doi.org/10.1007/s11042-023-14614-8
Zhang LY, Liu S, Pareschi F, et al., 2018. On the security of a class of diffusion mechanisms for image encryption. IEEE Trans Cybern, 48(4):1163–1175. https://doi.org/10.1109/tcyb.2017.2682561
Zhang WM, Hu XC, Li XL, et al., 2013. Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression. IEEE Trans Image Process, 22(7):2775–2785. https://doi.org/10.1109/TIP.2013.2257814
Zhang XP, 2012. Separable reversible data hiding in encrypted image. IEEE Trans Inform Forens Secur, 7(2):826–832. https://doi.org/10.1109/TIFS.2011.2176120
Zhou LN, Lu ZG, You WK, et al., 2023. Reversible data hiding using a transformer predictor and an adaptive embedding strategy. Front Inform Technol Electron Eng, 24(8): 1143–1155. https://doi.org/10.1631/FITEE.2300041
Author information
Authors and Affiliations
Contributions
Yongning GUO, Guodong SU, and Zhiqiang YAO designed the research. Yongning GUO and Guodong SU processed the data and drafted the paper. Zhiqiang YAO helped organize the paper. Yongning GUO, Guodong SU, and Wang ZHOU revised and finalized the paper.
Corresponding author
Ethics declarations
All the authors declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (No. 62272103), the Natural Science Foundation of Fujian Province, China (Nos. 2021J011237, 2022J01971, 2022J01972, 2022J01974, and 2022J01975), and the Open Fund of Engineering Research Center for ICH Digitalization and Multi-Source Information Fusion (Fujian Polytechnic Normal University), China (Nos. G3-KF2202 and G3-KF2205)
List of supplementary materials
1 Security analysis and comparison
2 Performance of file size preservation under various QFs
3 Comparison of PSNR among different schemes
4 Comparison of payload and file size increment under various QFs
5 Comparison of features for different RDH schemes in the encrypted compressed domain
6 Computational complexity analysis and comparison Table S1 Key space for four typical JPEG images
Table S2 Statistical data for the four typical JPEG images
Table S3 Security comparison between the proposed scheme and other schemes
Table S4 Average payload and file size increment of our scheme and Hua et al. (2023)’s scheme on images from the BossBase dataset
Table S5 Comparison of features for different RDH schemes in encrypted compressed domain
Fig. S1 Visual effect for Lena and Baboon images when QF=85
Fig. S2 Sketch attack analysis for the proposed scheme
Fig. S3 Illustration of the relationships of file size between the entropy encoded data of the original JPEG bitstreams and those of the marked encrypted JPEG bitstreams under various datasets and QFs
Fig. S4 PSNR of the marked approximate JPEG images under various payloads when QF=85
Supplementary materials
Rights and permissions
About this article
Cite this article
Guo, Y., Su, G., Yao, Z. et al. Reversible data hiding scheme for encrypted JPEG bitstreams using adaptive RZL rotation. Front Inform Technol Electron Eng 25, 1353–1369 (2024). https://doi.org/10.1631/FITEE.2300749
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2300749
Key words
- Joint Photographic Experts Group (JPEG)
- Reversible data hiding
- Embedding capacity
- File size preservation
- Format compatibility