Abstract
Industrial Internet, motivated by the deep integration of new-generation information and communication technology (ICT) and advanced manufacturing technology, will open up the production chain, value chain, and industry chain by establishing complete interconnections between humans, machines, and things. This will also help establish novel manufacturing and service modes, where personalized and customized production for differentiated services is a typical paradigm of future intelligent manufacturing. Thus, there is an urgent requirement to break through the existing chimney-like service mode provided by the hierarchical heterogeneous network architecture and establish a transparent channel for manufacturing and services using a flat network architecture. Starting from the basic concepts of process manufacturing and discrete manufacturing, we first analyze the basic requirements of typical manufacturing tasks. Then, with an overview on the developing process of industrial Internet, we systematically compare the current networking technologies and further analyze the problems of the present industrial Internet. On this basis, we propose to establish a novel “thin waist” that integrates sensing, communication, computing, and control for the future industrial Internet. Furthermore, we perform a deep analysis and engage in a discussion on the key challenges and future research issues regarding the multi-dimensional collaborative sensing of task–resource, the end-to-end deterministic communication of heterogeneous networks, and virtual computing and operation control of industrial Internet.
摘要
新一代信息通信技术与先进制造技术深度融合所催生的工业互联网, 通过“人、机、物”全要素互联, 将全方位打通生产链、价值链和产业链, 推动构建全新的制造和服务体系. 其中, 进行个性化定制生产, 实现差异化服务是未来制造的典型范式, 亟需突破现有分层异构工业网络所塑造的“烟囱式”服务架构, 打造扁平化的网络新体系, 构建制造与服务的透明通道. 本文从流程制造和离散制造的基本概念出发, 首先充分挖掘了典型制造任务的基本要求; 然后, 通过对工业互联网发展历程的概述, 系统介绍并比较了工业互联网的网络能力现状, 进一步分析了工业互联网的现存问题. 在此基础上, 提出建立“感知-通信-计算-控制”一体化的工业互联网“细腰”新架构. 进一步地, 深入分析讨论了所面临的核心挑战及未来研究方向, 包括工业互联网的业务-资源多维协同感知、异构融合网络端到端确定性通信、虚拟计算与运行控制.
Similar content being viewed by others
References
3GPP, 2017. Service Requirements for the 5G System (Release 15). Technical Specification No. 22.261, 3GPP. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107 [Accessed on Apr. 16, 2023].
3GPP, 2018. Study on Communication for Automation in Vertical Domains (CAV) (Release 15). Technical Report No. 22.804, 3GPP. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3187 [Accessed on Apr. 16, 2023].
3GPP, 2020. Enhanced Industrial Internet of Things (IoT) and Ultra-Reliable and Low Latency Communication (URLLC) Support for NR (Release 17). RP-200799, 3GPP. https://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_88e/Docs [Accessed on Apr. 16, 2023].
Afolabi I, Taleb T, Samdanis K, et al., 2018. Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun Surv Tutor, 20(3):2429–2453. https://doi.org/10.1109/COMST.2018.2815638
Aledhari M, Razzak R, Parizi RM, et al., 2020. Federated learning: a survey on enabling technologies, protocols, and applications. IEEE Access, 8:140699–140725. https://doi.org/10.1109/ACCESS.2020.3013541
Andrews JG, Buzzi S, Choi W, et al., 2014. What will 5G be? IEEE J Sel Areas Commun, 32(6):1065–1082. https://doi.org/10.1109/JSAC.2014.2328098
Ansari J, Andersson C, de Bruin P, et al., 2022. Performance of 5G trials for industrial automation. Electronics, 11(3):412. https://doi.org/10.3390/electronics11030412
Arulkumaran K, Deisenroth MP, Brundage M, et al., 2017. Deep reinforcement learning: a brief survey. IEEE Signal Process Mag, 34(6):26–38. https://doi.org/10.1109/MSP.2017.2743240
Beck M, 2019. On the hourglass model. Commun ACM, 62(7):48–57. https://doi.org/10.1145/3274770
Chi HR, Wu CK, Huang NF, et al., 2023. A survey of network automation for industrial Internet-of-Things toward Industry 5.0. IEEE Trans Ind Inform, 19(2):2065–2077. https://doi.org/10.1109/TII.2022.3215231
Chiwewe TM, Mbuya CF, Hancke GP, 2015. Using cognitive radio for interference-resistant industrial wireless sensor networks: an overview. IEEE Trans Ind Inform, 11(6):1466–1481. https://doi.org/10.1109/TII.2015.2491267
Cui YH, Liu F, Jing XJ, et al., 2021. Integrating sensing and communications for ubiquitous IoT: applications, trends, and challenges. IEEE Netw, 35(5):158–167. https://doi.org/10.1109/MNET.010.2100152
Dang SP, Amin O, Shihada B, et al., 2020. What should 6G be? Nat Electron, 3(1):20–29. https://doi.org/10.1038/s41928-019-0355-6
Danielis P, Skodzik J, Altmann V, et al., 2014. Survey on real-time communication via Ethernet in industrial automation environments. Proc IEEE Emerging Technology and Factory Automation, p.1–8. https://doi.org/10.1109/ETFA.2014.7005074
de Donato W, Pescapé A, Dainotti A, 2014. Traffic identification engine: an open platform for traffic classification. IEEE Netw, 28(2):56–64. https://doi.org/10.1109/MNET.2014.6786614
Dutra D, de Oliveira VC, Silva JR, 2013. Manufacturing as Service: the challenge of intelligent manufacturing. IFAC Proc Vol, 46(7):281–287. https://doi.org/10.3182/20130522-3-BR-4036.00102
Farooq MS, Abdullah M, Riaz S, et al., 2023. A survey on the role of industrial IoT in manufacturing for implementation of smart industry. Sensors, 23(21):8958. https://doi.org/10.3390/s23218958
Garg S, Kaur K, Kaddoum G, et al., 2021. SDN-NFV-aided edge-cloud interplay for 5G-envisioned energy Internet ecosystem. IEEE Netw, 35(1):356–364. https://doi.org/10.1109/MNET.011.1900602
General Electric, 2013. Industrial Internet: Pushing the Boundaries of Minds and Machines. https://www.ge.com/news/sites/default/files/5901.pdf [Accessed on Apr. 14, 2023].
Hampel G, Li C, Li JY, 2019. 5G ultra-reliable low-latency communications in factory automation leveraging licensed and unlicensed bands. IEEE Commun Mag, 57(5):117–123. https://doi.org/10.1109/MCOM.2019.1601220
Haykin S, 2005. Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun, 23(2):201–220. https://doi.org/10.1109/JSAC.2004.839380
Hazra A, Adhikari M, Amgoth T, et al., 2023. A comprehensive survey on interoperability for IIoT: taxonomy, standards, and future directions. ACM Comput Surv, 55(1):9. https://doi.org/10.1145/3485130
He YH, Shen JL, Xiao K, et al., 2020. A sparse protocol parsing method for IIoT protocols based on HMM hybrid model. IEEE Int Conf on Communications, p.1–6. https://doi.org/10.1109/ICC40277.2020.9149040
Holfeld B, Wieruch D, Wirth T, et al., 2016. Wireless communication for factory automation: an opportunity for LTE and 5G systems. IEEE Commun Mag, 54(6):36–43. https://doi.org/10.1109/MCOM.2016.7497764
Huang VKL, Pang ZB, Chen CJA, et al., 2018. New trends in the practical deployment of industrial wireless: from noncritical to critical use cases. IEEE Ind Electron Mag, 12(2):50–58. https://doi.org/10.1109/MIE.2018.2825480
IEC, 2010. Industrial Communication Networks—Wireless Communication Network and Communication Profile—WirelessHART™. IEC 62591:2010. National Standards of Switzerland.
IEC, 2011. Industrial Communication Networks—Fieldbus Specifications—WIA-PA Communication Network and Communication Profile. IEC 62601:2011. National Standards of Switzerland.
IEC, 2013. Enterprise-Control System Integration—Part 1: Models and Terminology. IEC 62264:2013. International Electrotechnical Commission.
IEC, 2014a. Industrial Communication Networks—Fieldbus Specifications—Part 1: Overview and Guidance for the IEC 61158 and IEC 61784 Series. IEC 61158-1:2014. National Standards of Switzerland.
IEC, 2014b. Industrial Networks—Wireless Communication Network and Communication Profile—ISA100.11a. IEC 62734:2014. National Standards of Switzerland.
IEC, 2017. Networks—Wireless Communication Network and Communication Profile—WIA-FA. IEC 62948:2017. National Standards of Switzerland.
Jiang CX, Cong Y, Chen JM, et al., 2024. Rethinking development and major research plans of industrial Internet in China. Fundam Res, 4(1):3–7. https://doi.org/10.1016/j.fmre.2023.06.017
Jin X, Xia CQ, Xu C, et al., 2023. Mixed-Criticality Industrial Wireless Networks. Springer, Singapore, p.1–9. https://doi.org/10.1007/978-981-19-8922-3
Kim KS, Kim DK, Chae CB, et al., 2019. Ultrareliable and low-latency communication techniques for tactile Internet services. Proc IEEE, 107(2):376–393. https://doi.org/10.1109/JPROC.2018.2868995
Ksentini A, Frangoudis PA, 2020. Toward slicing-enabled multi-access edge computing in 5G. IEEE Netw, 34(2):99–105. https://doi.org/10.1109/MNET.001.1900261
Kusiak A, 2020. Service manufacturing = Process-as-a-Service + Manufacturing Operations-as-a-Service. J Intell Manuf, 31(1):1–2. https://doi.org/10.1007/s10845-019-01527-3
Lei W, Soong ACK, Liu JH, et al., 2021. 5G System Design: an End to End Perspective (2nd Ed.). Springer, Cham, Germany, p.9–20. https://doi.org/10.1007/978-3-030-73703-0
Li JQ, Yu FR, Deng GO, et al., 2017. Industrial Internet: a survey on the enabling technologies, applications, and challenges. IEEE Commun Surv Tutor, 19(3):1504–1526. https://doi.org/10.1109/COMST.2017.2691349
Liang W, Zhang XL, Xiao Y, et al., 2011. Survey and experiments of WIA-PA specification of industrial wireless network. Wirel Commun Mob Comput, 11(8):1197–1212. https://doi.org/10.1002/wcm.976
Liang YC, Zhang QQ, Larsson EG, et al., 2020. Symbiotic radio: cognitive backscattering communications for future wireless networks. IEEE Trans Cogn Commun Netw, 6(4):1242–1255. https://doi.org/10.1109/TCCN.2020.3023139
Liu XY, Xu C, Yu HB, et al., 2022. Multi-agent deep reinforcement learning for end–edge orchestrated resource allocation in industrial wireless networks. Front Inform Technol Electron Eng, 23(1):47–60. https://doi.org/10.1631/FITEE.2100331
Nasrallah A, Thyagaturu AS, Alharbi Z, et al., 2019. Ultra-low latency (ULL) networks: the IEEE TSN and IETF DetNet standards and related 5G ULL research. IEEE Commun Surv Tutor, 21(1):88–145. https://doi.org/10.1109/COMST.2018.2869350
Pang ZB, Luvisotto M, Dzung D, 2017. Wireless highperformance communications: the challenges and opportunities of a new target. IEEE Ind Electron Mag, 11(3):20–25. https://doi.org/10.1109/MIE.2017.2703603
Pop P, Raagaard ML, Gutierrez M, et al., 2018. Enabling fog computing for industrial automation through timesensitive networking (TSN). IEEE Commun Stand Mag, 2(2):55–61. https://doi.org/10.1109/MCOMSTD.2018.1700057
Posada J, Toro C, Barandiaran I, et al., 2015. Visual computing as a key enabling technology for Industrie 4.0 and industrial Internet. IEEE Comput Graph Appl, 35(2):26–40. https://doi.org/10.1109/MCG.2015.45
Prados-Garzon J, Taleb T, 2021. Asynchronous timesensitive networking for 5G backhauling. IEEE Netw, 35(2):144–151. https://doi.org/10.1109/MNET.011.2000402
Qian F, 2023. The future of smart process manufacturing. Engineering, 22(3):20–22. https://doi.org/10.1016/j.eng.2022.04.029
Qian F, Zhong WM, Du WL, 2017. Fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Engineering, 3(2):154–160. https://doi.org/10.1016/J.ENG.2017.02.011
Qin W, Chen SQ, Peng MG, 2020. Recent advances in industrial Internet: insights and challenges. Digit Commun Netw, 6(1):1–13. https://doi.org/10.1016/j.dcan.2019.07.001
Qin ZJ, Zhou XW, Zhang L, et al., 2020. 20 years of evolution from cognitive to intelligent communications. IEEE Trans Cogn Commun Netw, 6(1):6–20. https://doi.org/10.1109/TCCN.2019.2949279
Scanzio S, Wisniewski L, Gaj P, 2021. Heterogeneous and dependable networks in industry—a survey. Comput Ind, 125:103388. https://doi.org/10.1016/j.compind.2020.103388
Seol Y, Hyeon D, Min JH, et al., 2021. Timely survey of timesensitive networking: past and future directions. IEEE Access, 9:142506–142527. https://doi.org/10.1109/ACCESS.2021.3120769
Shao YY, Xue YB, Li J, 2014. PPP: towards parallel protocol parsing. China Commun, 11(10):106–116. https://doi.org/10.1109/CC.2014.6969799
Trammell B, Hildebrand J, 2014. Evolving transport in the Internet. IEEE Int Comput, 18(5):60–64. https://doi.org/10.1109/MIC.2014.91
University of Oulu, 2019. White Paper: Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence. University of Oulu, Oulu, Finland.
Verhappen I, 2016. WIA-PA and WIA-FA to Be Added to IEC Wireless Standards. https://www.controlglobal.com/network/wireless/article/11320265/wia-pa-and-wia-fa-to-be-added-to-iec-wireless-standards [Accessed on Apr. 16, 2023].
Vitturi S, Tramarin F, Seno L, 2013. Industrial wireless networks: the significance of timeliness in communication systems. IEEE Ind Electron Mag, 7(2):40–51. https://doi.org/10.1109/MIE.2013.2253837
Wang Q, Jiang J, 2016. Comparative examination on architecture and protocol of industrial wireless sensor network standards. IEEE Commun Surv Tutor, 18(3):2197–2219. https://doi.org/10.1109/COMST.2016.2548360
Wang TR, Zhang Y, Yu HB, et al., 2012. Advanced Manufacturing Technology in China: a Roadmap to 2050. Springer Berlin, Heidelberg, Germany, p.57–60. https://doi.org/10.1007/978-3-642-13855-3
Wollschlaeger M, Sauter T, Jasperneite J, 2017. The future of industrial communication: automation networks in the era of the Internet of Things and Industry 4.0. IEEE Ind Electron Mag, 11(1):17–27. https://doi.org/10.1109/MIE.2017.2649104
Xu C, Zeng P, Yu HB, et al., 2021. WIA-NR: ultra-reliable low-latency communication for industrial wireless control networks over unlicensed bands. IEEE Netw, 35(1):258–265. https://doi.org/10.1109/MNET.011.2000308
Xu C, Yu HB, Zeng P, et al., 2023a. Towards critical industrial wireless control: prototype implementation and experimental evaluation on URLLC. IEEE Commun Mag, 61(9):193–199. https://doi.org/10.1109/MCOM.009.2200648
Xu C, Tang ZX, Yu HB, et al., 2023b. Digital twin-driven collaborative scheduling for heterogeneous task and edge-end resource via multi-agent deep reinforcement learning. IEEE J Sel Areas Commun, 41(10):3056–3069. https://doi.org/10.1109/JSAC.2023.3310066
Xu C, Du XY, Li XC, et al., 2023c. 5G-based industrial wireless controller: protocol adaptation, prototype development, and experimental evaluation. Actuators, 12(2):49. https://doi.org/10.3390/act12020049
Xu HS, Wu J, Pan QQ, et al., 2023. A survey on digital twin for industrial Internet of Things: applications, technologies and tools. IEEE Commun Surv Tutor, 25(4):2569–2598. https://doi.org/10.1109/COMST.2023.3297395
Yang T, Yi XL, Lu SW, et al., 2021. Intelligent manufacturing for the process industry driven by industrial artificial intelligence. Engineering, 7(9):1224–1230. https://doi.org/10.1016/j.eng.2021.04.023
Yousuf AM, Rochester EM, Ousat B, et al., 2018. Throughput, coverage and scalability of LoRa LPWAN for Internet of Things. IEEE/ACM 26th Int Symp on Quality of Service, p.1–10. https://doi.org/10.1109/IWQoS.2018.8624157
Yu HB, Zeng P, Xu C, 2022. Industrial wireless control networks: from WIA to the future. Engineering, 8:18–24. https://doi.org/10.1016/j.eng.2021.06.024
Yu HB, Zeng P, Zheng M, et al., 2023. Performance Controllable Industrial Wireless Networks. Springer, Singapore, p.1–11. https://doi.org/10.1007/978-981-99-0389-4
Zhang HK, Quan W, 2022. Networking automation and intelligence: a new era of network innovation. Engineering, 17:13–16. https://doi.org/10.1016/j.eng.2021.06.019
Zheng M, Liang W, Yu HB, et al., 2017. Performance analysis of the industrial wireless networks standard: WIA-PA. Mob Netw Appl, 22(1):139–150. https://doi.org/10.1007/s11036-015-0647-7
Zhuang FZ, Qi ZY, Duan KY, et al., 2021. A comprehensive survey on transfer learning. Proc IEEE, 109(1):43–76. https://doi.org/10.1109/JPROC.2020.3004555
Author information
Authors and Affiliations
Contributions
Chi XU summarized the literature and drafted the paper. Xi JIN, Changqing XIA, and Dong LI helped organize the paper. Chi XU, Peng ZENG, and Haibin YU finalized the paper.
Corresponding author
Ethics declarations
All the authors declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (Nos. 92267108, 62173322, 62133014, and 61972389) and the Science and Technology Program of Liaoning Province, China (Nos. 2023JH3/10200004, 2022JH25/10100005, and 2023JH3/10200006)
Rights and permissions
About this article
Cite this article
Xu, C., Yu, H., Jin, X. et al. Industrial Internet for intelligent manufacturing: past, present, and future. Front Inform Technol Electron Eng 25, 1173–1192 (2024). https://doi.org/10.1631/FITEE.2300806
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2300806