Abstract
In passive bistatic radar, the computational efficiency of clutter suppression algorithms remains low, due to continuous increases in bandwidth for potential illuminators of opportunity and the use of multi-source detection frameworks. Accordingly, we propose a lightweight version of the extensive cancellation algorithm (ECA), which achieves clutter suppression performance comparable to that of ECA while reducing the computational and space complexities by at least one order of magnitude. This is achieved through innovative adjustments to the reference signal subspace matrix within the ECA framework, resulting in a redefined approach to the computation of the autocorrelation matrix and cross-correlation vector. This novel modification significantly simplifies the computational aspects. Furthermore, we introduce a dimension-expanding technique that streamlines clutter estimation. Overall, the proposed method replaces the computation-intensive aspects of the original ECA with fast Fourier transform (FFT) and inverse FFT operations, and eliminates the construction of the memory-intensive signal subspace. Comparing the proposed method with ECA and its batched version (ECA-B), the central advantages are more streamlined implementation and minimal storage requirements, all without compromising performance. The efficacy of this approach is demonstrated through both simulations and field experimental results.
摘要
由于潜在机会照射源信号带宽不断增大及普遍使用的多源探测框架, 外辐射源雷达杂波抑制的计算效率非常受限. 本文提出一种经典扩展相消算法(ECA)的轻量化版本, 能够实现和ECA相当的杂波抑制性能, 但计算复杂度和空间复杂度能降低至少一个数量级. 首先, 通过改进ECA中参考信号子空间的构建方式, 重新定义自相关和互相关矩阵的计算方法. 然后, 通过一种扩维方法来简化杂波估计过程. 总体上, 所提方法利用计算复杂度更低的快速傅里叶变换及其反变换来替代传统ECA中的高密度计算部分, 并省去了高存储量的参考信号子空间的构建. 仿真和外场数据处理结果验证了本文所提方法相比于ECA及其他批处理版本的优越性.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Ansari F, Taban MR, Gazor S, 2016. A novel sequential algorithm for clutter and direct signal cancellation in passive bistatic radars. EURASIP J Adv Signal Process, 2016: 134. https://doi.org/10.1186/s13634-016-0431-2
Attalah MA, Laroussi T, Gini F, et al., 2019. Range-Doppler fast block LMS algorithm for a DVB-T-based passive bistatic radar. Signal Image Video Process, 13: 27–34. https://doi.org/10.1007/s11760-018-1324-7
Bernaschi M, di Lallo A, Farina A, et al., 2012. Use of a graphics processing unit for passive radar signal and data processing. IEEE Aerosp Electron Syst Mag, 27(10): 52–59. https://doi.org/10.1109/maes.2012.6373912
Bolvardi H, Derakhtian M, Sheikhi A, 2015. Reduced complexity generalised likelihood ratio detector for digital video broadcasting terrestrial-based passive radar. IET Radar Sonar Navig, 9(8): 1021–1029. https://doi.org/10.1049/iet-rsn.2014.0557
Cardinali R, Colone F, Ferretti C, et al., 2007. Comparison of clutter and multipath cancellation techniques for passive radar. IEEE Radar Conf, p.469–474. https://doi.org/10.1109/radar.2007.374262
Colone F, O’hagan DW, Lombardo P, et al., 2009. A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar. IEEE Trans Aerosp Electron Syst, 45(2): 698–722. https://doi.org/10.1109/taes.2009.5089551
Colone F, Palmarini C, Martelli T, et al., 2016. Sliding extensive cancellation algorithm for disturbance removal in passive radar. IEEE Trans Aerosp Electron Syst, 52(3): 1309–1326. https://doi.org/10.1109/taes.2016.150477
Colone F, Filippini F, di Seglio M, et al., 2022. On the use of reciprocal filter against WiFi packets for passive radar. IEEE Trans Aerosp Electron Syst, 58(4): 2746–2761. https://doi.org/10.1109/taes.2021.3138711
Colone F, Filippini F, Pastina D, 2023. Passive radar: past, present, and future challenges. IEEE Aerosp Electron Syst Mag, 38(1): 54–69. https://doi.org/10.1109/maes.2022.3221685
Farhang-Boroujeny B, 2013. Adaptive Filters: Theory and Applications (2nd Ed.). John Wiley & Sons, Hoboken, USA, p.440–460.
Fränken D, Ott T, Lutz S, et al., 2022. Integrating multiband active and passive radar for enhanced situational awareness. IEEE Aerosp Electron Syst Mag, 37(8): 36–49. https://doi.org/10.1109/maes.2022.3178973
Fu Y, Wan XR, Zhang X, et al., 2018. Parallel processing algorithm for multipath clutter cancellation in passive radar. IET Radar Sonar Nav, 12(1): 121–129. https://doi.org/10.1049/iet-rsn.2017.0106
Garry JL, Baker CJ, Smith GE, 2017. Evaluation of direct signal suppression for passive radar. IEEE Trans Geosci Remote Sens, 55(7): 3786–3799. https://doi.org/10.1109/tgrs.2017.2680321
Golub GH, van Loan CF, 2013. Matrix Computations (4th Ed.). Johns Hopkins University Press, Baltimore, USA, p.220–222.
Jarrah AA, Jamali MM, 2016a. FPGA based architecture of extensive cancellation algorithm (ECA) for passive bistatic radar (PBR). Microprocess Microsyst, 41: 56–66. https://doi.org/10.1016/j.micpro.2015.12.003
Jarrah AA, Jamali MM, 2016b. A parallel implementation of extensive cancellation algorithm (ECA) for passive bistatic radar (PBR) on a GPU. J Signal Process Syst, 85(2): 201–209. https://doi.org/10.1007/s11265-015-1066-5
John M, Inggs M, Petri D, 2011. Real time processing of networked passive coherent location radar system. Int J Electron Telecommun, 57(3): 363–368. https://doi.org/10.2478/v10177-011-0049-0
Kuschel H, Cristallini D, Olsen KE, 2019. Tutorial: passive radar tutorial. IEEE Aerosp Electron Syst Mag, 34(2): 2–19. https://doi.org/10.1109/MAES.2018.160146
Lestari AA, Simbolon L, Bura RO, et al., 2022. UWB wire-bowtie array for FM-PCL passive radar. IEEE Trans Antenn Propag, 70(9): 7999–8007. https://doi.org/10.1109/tap.2022.3164920
Lyu X, Ding YQ, 2022. Joint multipath signals and noise reduction in passive radar. IET Signal Process, 16(3): 366–376. https://doi.org/10.1049/sil2.12100
Mahfoudia O, Horlin F, Neyt X, 2019. Performance analysis of the reference signal reconstruction for DVB-T passive radars. Signal Process, 158: 26–35. https://doi.org/10.1016/j.sigpro.2018.12.016
Martelli T, Colone F, Cardinali R, 2020. DVB-T based passive radar for simultaneous counter-drone operations and civil air traffic surveillance. IET Radar Sonar Navig, 14(4): 505–515. https://doi.org/10.1049/iet-rsn.2019.0309
Miao YJ, Li JC, Bao Y, et al., 2021. Efficient multipath clutter cancellation for UAV monitoring using DAB satellite-based PBR. Remote Sens, 13(17): 3429. https://doi.org/10.3390/rs13173429
Moscardini C, Petri D, Capria A, et al., 2015. Batches algorithm for passive radar: a theoretical analysis. IEEE Trans Aerosp Electron Syst, 51 (2): 1475–1487. https://doi.org/10.1109/taes.2015.130407
Palmer J, Searle SJ, 2012. Evaluation of adaptive filter algorithms for clutter cancellation in passive bistatic radar. IEEE Radar Conf, p.493–498. https://doi.org/10.1109/radar.2012.6212191
Palmer J, Palumbo S, Summers A, et al., 2011. An overview of an illuminator of opportunity passive radar research project and its signal processing research directions. Dig Signal Process, 21(5): 593–599. https://doi.org/10.1016/j.dsp.2011.01.002
Pastina D, Santi F, Pieralice F, et al., 2021. Passive radar imaging of ship targets with GNSS signals of opportunity. IEEE Trans Geosci Remote Sens, 59(3): 2627–2642. https://doi.org/10.1109/tgrs.2020.3005306
Samczyński P, Abratkiewicz K, Płotka M, et al., 2022. 5G network-based passive radar. IEEE Trans Geosci Remote Sens, 60: 1–9. https://doi.org/10.1109/tgrs.2021.3137904
Sun HB, Chia LG, Razul SG, 2021. Through-wall human sensing with WiFi passive radar. IEEE Trans Aerosp Electron Syst, 57(4): 2135–2148. https://doi.org/10.1109/taes.2021.3069767
Wang H, Wang J, Zhong L, 2011. Mismatched filter for analogue TV-based passive bistatic radar. IET Radar Sonar Navig, 5(5): 573–581. https://doi.org/10.1049/iet-rsn.2010.0136
Wu Y, Chen ZK, Peng DL, 2023. Target detection of passive bistatic radar under the condition of impure reference signal. Remote Sens, 15(15): 3876. https://doi.org/10.3390/rs15153876
Zhang C, Shi SZ, Yan SH, et al., 2023. Moving target detection and parameter estimation using BeiDou GEO satellites-based passive radar with short-time integration. IEEE J Sel Top Appl Earth Obs Remote Sens, 16: 3959–3972. https://doi.org/10.1109/jstars.2023.3266875
Zuo L, Wang J, Sui J, et al., 2021. An inter-subband processing algorithm for complex clutter suppression in passive bistatic radar. Remote Sens, 13(23): 4954. https://doi.org/10.3390/rs13234954
Author information
Authors and Affiliations
Contributions
Yong WU designed the research, processed the data, and drafted the paper. Luo ZUO offered data and helped organize the paper. Dongliang PENG and Zhikun CHEN revised and finalized the paper.
Corresponding author
Ethics declarations
All the authors declare that they have no conflict of interest.
Additional information
Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LZ23F030002), the Science and Technology Program of Zhejiang Provincial Department of Transportation (No. 2024012), and the Talent Funding Project of Zhejiang Institute of Communications (Nos. 822321KY0127 and 2024JK05)
List of supplementary materials
1 Performance analysis
2 Applicability and limitation analysis
Table S1 Computational complexity comparisons of ECA, ECA-B, and ECA-L
Table S2 Space complexity comparisons of ECA, ECA-B, and ECA-L
Fig. S1 Computational complexity variations of ECA, ECA-B, and ECA-L over the CPI and clutter suppression order K
Fig. S2 Space complexity variations of ECA, ECA-B, and ECA-L over the CPI and clutter suppression order K
Supplementary materials for
Rights and permissions
About this article
Cite this article
Wu, Y., Zuo, L., Peng, D. et al. A lightweight clutter suppression algorithm for passive bistatic radar. Front Inform Technol Electron Eng 25, 1536–1551 (2024). https://doi.org/10.1631/FITEE.2300859
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2300859
Key words
- Passive bistatic radar
- Clutter suppression
- Extensive cancellation algorithm
- Computational complexity
- Space complexity