Abstract
Distributed precision jamming (DPJ) is a novel blanket jamming concept in electronic warfare, which delivers the jamming resource to the opponent equipment precisely and ensures that friendly devices are not affected. Robust jamming performance and low hardware burden on the jammers are crucial for practical DPJ implementation. To achieve these goals, we study the robust design of wideband constant modulus (CM) discrete phase waveform for DPJ, where the worst-case combined power spectrum (CPS) of both the opponent and friendly devices is considered in the objective function, and the CM discrete phase constraints are used to design the wideband waveform. Specifically, the resultant mathematical model is a large-scale minimax multi-objective optimization problem (MOP) with CM and discrete phase constraints. To tackle the challenging MOP, we transform it into a single-objective minimization problem using the Lp-norm and Pareto framework. For the approximation problem, we propose the Riemannian conjugate gradient for CM discrete phase constraints (RCG-CMDPC) algorithm with low computational complexity, which leverages the complex circle manifold and a projection method to satisfy the CM discrete phase constraints within the RCG framework. Numerical examples demonstrate the superior robust DPJ effectiveness and computational efficiency compared to other competing algorithms.
摘要
分布式精确干扰是电子战领域一种先进的压制式干扰技术,能够精准地将干扰资源精确地投送至敌方电子设备,同时确保友方设备不受影响。考虑到实现高效干扰与降低硬件负担的双重挑战,本文提出一种面向分布式精确干扰的具有宽带恒定模值离散相位约束的鲁棒波形设计方法。该方法在构建目标函数时同时考虑了敌方设备和友方设备处合成功率谱的最坏情况,并为求解的宽带波形附加恒定模值和离散相位约束。由此得到的数学模型可归结为一个具有恒定模值和离散相位约束的大规模极小—极大多目标优化问题。为此,利用Lp范数和帕累托框架将其转化为一个单目标最小化问题。随后,提出一种计算复杂度较低的恒定模值离散相位约束的黎曼共轭梯度算法,该算法利用复圆流形和投影来满足黎曼共轭梯度框架内的恒定模值和离散相位约束。仿真实验表明,相较于现有研究,该算法具有更好的鲁棒性和更高计算效率。
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Absil P, Mahony R, Sepulchre R, 2008. Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, USA. https://doi.org/10.1515/9781400830244
Aubry A, De Maio A, Govoni MA, et al., 2020. On the design of multi-spectrally constrained constant modulus radar signals. IEEE Trans Signal Process, 68:2231–2243. https://doi.org/10.1109/TSP.2020.2983642
Blunt SD, Mokole EL, 2016. Overview of radar waveform diversity. IEEE Aerosp Electron Syst Mag, 31(11):2–42.
Boumal N, 2014. Optimization and Estimation on Manifolds. PhD Thesis, Université Catholique de Louvain, Leuven, Belgium.
Bu Y, Yu XX, Yang J, et al., 2021. A new approach for design of constant modulus discrete phase radar waveform with low WISL. Signal Process, 187:108145. https://doi.org/10.1016/j.sigpro.2021.108145
Chen SW, Xu CC, Zhang JY, 2020. Efficient focused energy delivery with grating lobe mitigation for precision electronic warfare. Signal Process, 169:107409. https://doi.org/10.1016/j.sigpro.2019.107409
Fan T, Yu XX, Gan N, et al., 2021. Transmit–receive design for airborne radar with nonuniform pulse repetition intervals. IEEE Trans Aerosp Electron Syst, 57(6):4067–4084. https://doi.org/10.1109/TAES.2021.3090915
Fan T, Cui GL, Yu XX, et al., 2024. Joint design of intra–inter agile pulses and Doppler filter banks for Doppler ambiguous target. IEEE Trans Signal Process, 72:867–882. https://doi.org/10.1109/TSP.2024.3355768
Gao J, Wu RH, Zhang JD, 2020. An adaptive multi-target jamming waveform design based on power minimization. Entropy, 22(5):508. https://doi.org/10.3390/e22050508
Geng J, Jiu B, Li K, et al., 2023. Radar and jammer intelligent game under jamming power dynamic allocation. Remote Sens, 15(3):581. https://doi.org/10.3390/rs15030581
Imani S, Nayebi MM, 2021. A coordinate descent framework for beampattern design and waveform synthesis in MIMO radars. IEEE Trans Aerosp Electron Syst, 57(6):3552–3562. https://doi.org/10.1109/TAES.2021.3074207
Kelsey PW, 2023. A pulse-on-pulse technique for electronic warfare systems. IEEE Trans Aerosp Electron Syst, 59(6): 9769–9774. https://doi.org/10.1109/TAES.2023.3285518
Li J, Stoica P, 2008. MIMO Radar Signal Processing. Wiley, Hoboken, USA. https://doi.org/10.1002/9780470391488
Liu RT, Zhang W, Yu XX, et al., 2022. Transmit–receive beam-forming for distributed phased-MIMO radar system. IEEE Trans Veh Technol, 71(2):1439–1453. https://doi.org/10.1109/TVT.2021.3133596
Lu JH, Fan T, Yu XX, et al., 2021. Robust design and evaluation of phase codes for radar performance optimization with a finite alphabet constraint. Electron Lett, 57(10):415–418. https://doi.org/10.1049/ell2.12146
Manton JH, 2020. Geometry, manifolds, and nonconvex optimization: how geometry can help optimization. IEEE Signal Process Mag, 37(5):109–119. https://doi.org/10.1109/MSP.2020.3004034
Pärlin K, Riihonen T, Le Nir V, et al., 2021. Full-duplex tactical information and electronic warfare systems. IEEE Commun Mag, 59(8):73–79. https://doi.org/10.1109/MCOM.001.2001139
Pishrow MM, Abouei J, 2021. Joint design of the discrete phase transmit sequence and receive filter in radar systems. IET Radar Sonar Nav, 16(2):315–326. https://doi.org/10.1049/rsn2.12185
Qiu XF, Zhang XY, Huo K, et al., 2023. Quartic Riemannian adaptive regularization with cubics for radar waveform design. IEEE Trans Aerosp Electron Syst, 59(6):7514–7528. https://doi.org/10.1109/TAES.2023.3289779
Shi MD, Li XH, Liu JW, et al., 2024. Constant modulus waveform design for RIS-aided ISAC system. IEEE Trans Veh Technol, 73(6):8648–8659. https://doi.org/10.1109/TVT.2024.3362431
Song D, Wang W, Xu ZH, et al., 2016. Focused energy delivery with protection for precision electronic warfare. IEEE Trans Aerosp Electron Syst, 52(6):3053–3064. https://doi.org/10.1109/TAES.2016.150713
Song JX, Babu P, Palomar DP, 2016. Sequence design to minimize the weighted integrated and peak sidelobe levels. IEEE Trans Signal Process, 64(8):2051–2064. https://doi.org/10.1109/TSP.2015.2510982
Song YX, Wang Y, Xie JY, et al., 2022. Ultra-low sidelobe waveforms design for LPI radar based on joint complementary phase-coding and optimized discrete frequency-coding. Remote Sens, 14(11):2592. https://doi.org/10.3390/rs14112592
Tai N, Cui KB, Wang C, et al., 2016. The design of a novel coherent noise jammer against LFM radar. IEICE Electron Expr, 13(21):20160924. https://doi.org/10.1587/elex.13.20160924
Tan R, Bu Y, Pan BN, et al., 2024. Cooperative waveforms design for distributed sites in multiple blanket jamming. IEEE Sens J, 24(6):8774–8787. https://doi.org/10.1109/JSEN.2024.3359601
Wang YX, Huang GC, Li W, 2018. Waveform design for radar and extended target in the environment of electronic warfare. J Syst Eng Electron, 29(1):48–57. https://doi.org/10.21629/JSEE.2018.01.05
Wu QH, Zhao F, Zhao TH, et al., 2023. Stepped frequency chirp signal imaging radar jamming using two-dimensional non-periodic phase modulation. Front Inform Technol Electron Eng, 24(3):433–446. https://doi.org/10.1631/FITEE.2200298
Xu YB, Huang C, Zhang CD, et al., 2022, A fast jamming waveform design method based on distributed precision jamming. Proc 2nd Int Conf on Computer Science, Electronic Information Engineering and Intelligent Control Technology, p.94–98. https://doi.org/10.1109/CEI57409.2022.9950158
Yang J, Aubry A, De Maio A, et al., 2022. Multi-spectrally constrained transceiver design against signal-dependent interference. IEEE Trans Signal Process, 70:1320–1332. https://doi.org/10.1109/TSP.2022.3144953
Yang J, Tan YS, Yu XX, et al., 2023. Waveform design for watermark framework based DFRC system with application on joint SAR imaging and communication. IEEE Trans Geosci Remote Sens, 61:5200214. https://doi.org/10.1109/TGRS.2022.3232528
Yang ZP, Zhou QS, Li ZH, et al., 2021. Grating lobe suppression in focussed energy delivery for precision electronic warfare. IET Radar Sonar Nav, 15(11):1420–1432. https://doi.org/10.1049/rsn2.12134
Yang ZP, Yang SN, Zhou QS, et al., 2022. A joint optimization algorithm for focused energy delivery in precision electronic warfare. Defence Technol, 18(4):709–721. https://doi.org/10.1016/j.dt.2021.03.001
Yang ZP, Zhang BY, Zhang KD, et al., 2023. Efficient waveform design with jamming characteristics for precision electronic warfare. Signal Process, 212:109162. https://doi.org/10.1016/j.sigpro.2023.109162
Yang ZP, Li ZH, Yu XX, et al., 2024. Maximin design of wideband constant modulus waveform for distributed precision jamming. IEEE Trans Signal Process, 72:1316–1332. https://doi.org/10.1109/TSP.2024.3365940
Zeng CC, Wang FZ, Li HB, et al., 2023. Target detection for distributed MIMO radar with nonorthogonal waveforms in cluttered environments. IEEE Trans Aerosp Electron Syst, 59(5):5448–5459. https://doi.org/10.1109/TAES.2023.3260819
Zhang JD, Xu NQ, 2020. Discrete phase coded sequence set design for waveform-agile radar based on alternating direction method of multipliers. IEEE Trans Aerosp Electron Syst, 56(6):4238–4252. https://doi.org/10.1109/TAES.2020.2993683
Zhang KD, Wang J, Zhou QS, et al., 2022a. Jamming waveform designed in focused energy delivery for precision electronic warfare scenario. Proc 7th Int Conf on Intelligent Computing and Signal Processing, p.1382–1386. https://doi.org/10.1109/ICSP54964.2022.9778715
Zhang KD, Zhou QS, Wang J, et al., 2022b. A method for jamming waveform design in precision electronic warfare scenarios. IET Signal Process, 16(5):562–574. https://doi.org/10.1049/sil2.12126
Zhang KD, Zhou QS, Wang J, et al., 2023. Wideband waveform design for distributed precision jamming. Entropy, 25(3): 496. https://doi.org/10.3390/e25030496
Zhang WJ, Hu JF, Wei ZY, et al., 2020. Constant modulus waveform design for MIMO radar transmit beampattern with residual network. Signal Process, 177:107735. https://doi.org/10.1016/j.sigpro.2020.107735
Zhao LC, Song JX, Babu P, et al., 2017. A unified framework for low autocorrelation sequence design via majorization–minimization. IEEE Trans Signal Process, 65(2):438–453. https://doi.org/10.1109/TSP.2016.2620113
Author information
Authors and Affiliations
Contributions
Qingsong ZHOU and Zhongping YANG designed the research. Jialong QIAN, Chao HUANG, Qinxian CHEN, Yibo XU, and Zhengkai WEI processed the data. Qingsong ZHOU and Jialong QIAN drafted the paper. Zhongping YANG helped organize the paper. Qingsong ZHOU, Jialong QIAN, and Zhongping YANG revised and finalized the paper.
Corresponding author
Ethics declarations
All the authors declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (No. 62301581) and the Postgraduate Scientific Research Innovation Project of Hunan Province, China (No. CX20230045)
Rights and permissions
About this article
Cite this article
Zhou, Q., Qian, J., Yang, Z. et al. Robust wideband waveform design with constant modulus and discrete phase constraints for distributed precision jamming. Front Inform Technol Electron Eng 26, 119–133 (2025). https://doi.org/10.1631/FITEE.2400285
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2400285
Key words
- Wideband waveform design
- Constant modulus (CM)
- Discrete phase
- Riemannian conjugate gradient (RCG)
- Distributed precision jamming (DPJ)