Abstract
Near-field technology is increasingly recognized due to its transformative potential in communication systems, establishing it as a critical enabler for sixth-generation (6G) telecommunication development. This paper presents a comprehensive survey of recent advancements in near-field technology research. First, we explore the near-field propagation fundamentals by detailing definitions, transmission characteristics, and performance analysis. Next, we investigate various near-field channel models—deterministic, stochastic, and electromagnetic information theory based models, and review the latest progress in near-field channel testing, highlighting practical performance and limitations. With evolving channel models, traditional mechanisms such as channel estimation, beamtraining, and codebook design require redesign and optimization to align with near-field propagation characteristics. We then introduce innovative beam designs enabled by near-field technologies, focusing on non-diffractive beams (such as Bessel and Airy) and orbital angular momentum (OAM) beams, addressing both hardware architectures and signal processing frameworks, showcasing their revolutionary potential in near-field communication systems. Additionally, we highlight progress in both engineering and standardization, covering the primary 6G spectrum allocation, enabling technologies for near-field propagation, and network deployment strategies. Finally, we conclude by identifying promising future research directions for near-field technology development that could significantly impact system design. This comprehensive review provides a detailed understanding of the current state and potential of near-field technologies.
摘要
近场技术因其对通信系统的变革性潜力而日益受到认可, 成为推动第六代(6G)系统发展的关键技术。本文全面综述了近场技术研究的最新进展。首先, 深入探讨了近场传播的基本原理, 详细阐述了其定义、传输特性和性能分析。接着, 研究了各种近场信道模型, 包括确定性模型、随机性模型和基于电磁信息理论的模型, 并回顾了近场信道测试的最新进展, 重点介绍了实际性能及其局限性。随着信道模型的不断发展, 传统的信道估计、波束训练、码本设计等机制需要重新设计和优化, 以适应近场传播特性。随后, 介绍了近场技术所支持的新型波束设计, 重点讨论了非衍射波束(如贝塞尔波束和艾里波束)和轨道角动量(OAM)波束, 同时涉及硬件架构和信号处理框架, 展示了它们在近场通信系统中的革命性潜力。此外, 强调了工程和标准化方面的进展, 涵盖了6G的主要频谱分配、支持近场传播的关键技术以及网络部署策略。最后, 总结了近场技术发展的未来研究方向, 这些方向有望对系统设计产生重大影响。这篇综述文章提供了对近场技术当前状态和未来潜力的深入理解。
Article PDF
Avoid common mistakes on your manuscript.
References
3GPP, 2023. RP-234018, Channel Modelling Enhancements for 7–24 GHz. https://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_102/Docs/RP-234018.zip
Abdou A, 2023. Super-Airy beams. Opt Expr, 31(24):39447–39453. https://doi.org/10.1364/OE.504205
Basar E, 2018. Orbital angular momentum with index modulation. IEEE Trans Wirel Commun, 17(3):2029–2037. https://doi.org/10.1109/TWC.2017.2787992
Björnson E, Demir ÖT, Sanguinetti L, 2021. A primer on near-field beamforming for arrays and reconfigurable intelligent surfaces. Proc 55th Asilomar Conf on Signals, Systems, and Computers, p.105–112. https://doi.org/10.1109/IEEECONF53345.2021.9723331
Bohagen F, Orten P, Oien GE, 2009. On spherical vs. plane wave modeling of line-of-sight MIMO channels. IEEE Trans Commun, 57(3):841–849. https://doi.org/10.1109/TCOMM.2009.03.070062
Cai XS, Fan W, Yin XF, et al., 2020. Trajectory-aided maximum-likelihood algorithm for channel parameter estimation in ultrawideband large-scale arrays. IEEE Trans Antenn Propag, 68(10):7131–7143. https://doi.org/10.1109/TAP.2020.2996774
Cao Y, Wang P, Zheng K, et al., 2023. Experimental performance evaluation of cell-free massive MIMO systems using COTS RRU with OTA reciprocity calibration and phase synchronization. IEEE J Sel Areas Commun, 41(6):1620–1634. https://doi.org/10.1109/JSAC.2023.3276057
Chen H, Elzanaty A, Ghazalian R, et al., 2022. Channel model mismatch analysis for XL-MIMO systems from a localization perspective. IEEE Global Communications Conf, p.1588–1593. https://doi.org/10.1109/GLOBECOM48099.2022.10000613
Chen KJ, Qi CH, Wang CX, et al., 2024. Beam training and tracking for extremely large-scale MIMO communications. IEEE Trans Wirel Commun, 23(5):5048–5062. https://doi.org/10.1109/TWC.2023.3324176
Chen R, Long WX, Wang XD, et al., 2020. Multi-mode OAM radio waves: generation, angle of arrival estimation and reception with UCAs. IEEE Trans Wirel Commun, 19(10):6932–6947. https://doi.org/10.1109/TWC.2020.3007026
Chen YB, Wang Y, Wang ZC, et al., 2024. Angular-distance based channel estimation for holographic MIMO. IEEE J Sel Areas Commun, 42(6):1684–1702. https://doi.org/10.1109/JSAC.2024.3389116
Cheng Q, Jin S, Cui TJ, 2023. Reconfigurable intelligent surfaces for wireless communications. Front Inform Technol Electron Eng, 24(12):1665–1668. https://doi.org/10.1631/FITEE.2320000
Cui MY, Dai LL, 2022. Channel estimation for extremely large-scale MIMO: far-field or near-field? IEEE Trans Commun, 70(4):2663–2677. https://doi.org/10.1109/TCOMM.2022.3146400
Cui MY, Dai LL, 2024. Near-field wideband beamforming for extremely large antenna arrays. IEEE Trans Wirel Commun, 23(10):13110–13124. https://doi.org/10.1109/TWC.2024.3398770
Cui MY, Wu ZD, Lu Y, et al., 2023a. Near-field MIMO communications for 6G: fundamentals, challenges, potentials, and future directions. IEEE Commun Mag, 61(1):40–46. https://doi.org/10.1109/MCOM.004.2200136
Cui MY, Dai LL, Wang ZC, et al., 2023b. Near-field rainbow: wideband beam training for XL-MIMO. IEEE Trans Wirel Commun, 22(6):3899–3912. https://doi.org/10.1109/TWC.2022.3222198
Cui TJ, Jin S, Zhang JY, et al., 2021. Research Report on Reconfigurable Intelligent Surface Technology (in Chinese). IMT-2030 (6G) Promotion Group, Beijing, China. https://www.imt2030.org.cn/html//default/zhongwen/chengguofabu/yanjiubaogao/list-7.html?index=2
Cui Z, Liu J, Yang G, 2024. XL-RIS empowered near-field physical layer security against jamming and eavesdropping attacks. Front Inform Technol Electron Eng, 25(12):1750–1758. https://doi.org/10.1631/FITEE.2400477
Demir ÖT, Björnson E, Sanguinetti L, 2022. Channel modeling and channel estimation for holographic massive MIMO with planar arrays. IEEE Wirel Commun Lett, 11(5):997–1001. https://doi.org/10.1109/LWC.2022.3152600
Dong ZJ, Zeng Y, 2022. Near-field spatial correlation for extremely large-scale array communications. IEEE Commun Lett, 26(7):1534–1538. https://doi.org/10.1109/LCOMM.2022.3170735
ETSI, 2020. ETSI TR 138 901 V16.1.0 (2020–11), Study on Channel Model for Frequencies from 0.5 to 100 GHz. V16.1.0. Technical Report 38.901 (3GPP TR 38.901 version 16.1.0 Release16). https://www.etsi.org/deliver/etsi_tr/138900_138999/138901/16.01.00_60/tr_138901v160100p.pdf
Ettorre M, Pavone SC, Casaletti M, et al., 2018. Near-field focusing by non-diffracting Bessel beams. In: Boriskin A, Sauleau R (Eds.), Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications. Springer, Cham, p.243–288. https://doi.org/10.1007/978-3-319-62773-1_8
Fan JB, Chen R, Long WX, et al., 2021. Radio-frequency multi-mode OAM detection based on UCA samples learning. Proc IEEE 22nd Int Workshop on Signal Processing Advances in Wireless Communications, p.56–60. https://doi.org/10.1109/SPAWC51858.2021.9593109
Feng C, Lu HQ, Zeng Y, et al., 2023. Near-field modeling and performance analysis for extremely large-scale IRS communications. IEEE Trans Wirel Commun, 23(5):4976–4989. https://doi.org/10.1109/TWC.2023.3323770
Feng Q, Kong XD, Shan MM, et al., 2022. Multi-orbital-angular-momentum-mode vortex wave multiplexing and demultiplexing with shared-aperture reflective metasurfaces. Phys Rev Appl, 17(3):0340171. https://doi.org/10.1103/PhysRevApplied.17.034017
Franceschetti M, Migliore MD, Minero P, et al., 2015. The information carried by scattered waves: near-field and non-asymptotic regimes. IEEE Trans Antenn Propag, 63(7):3144–3157. https://doi.org/10.1109/TAP.2015.2429742
Fuschini F, Zoli M, Vitucci EM, et al., 2019. A study on millimeter-wave multiuser directional beamforming based on measurements and ray tracing simulations. IEEE Trans Antenn Propag, 67(4):2633–2644. https://doi.org/10.1109/TAP.2019.2894271
Gao HQ, Kyösti P, Zhang X, et al., 2023. Digital twin enabled 6G radio testing: concepts, challenges and solutions. IEEE Commun Mag, 61(12):88–94. https://doi.org/10.1109/MCOM.001.2200860E
Gao S, Dong PH, Pan ZW, et al., 2024. Lightweight deep learning based channel estimation for extremely large-scale massive MIMO systems. IEEE Trans Veh Technol, 73(7):10750–10754. https://doi.org/10.1109/TVT.2024.3364510
Gao TY, Tang P, Tian L, et al., 2023. A 3GPP-like channel simulation framework considering near-field spatial non-stationary characteristics of massive MIMO. IEEE Globecom Workshops, p.1493–1498. https://doi.org/10.1109/GCWkshps58843.2023.10464808
Gong TR, Wei L, Yang ZJ, et al., 2023a. A generalized electromagnetic-domain channel modeling for LOS holographic MIMO with arbitrary surface placements. IEEE Int Conf on Communications Workshops, p.1222–1227. https://doi.org/10.1109/ICCWorkshops57953.2023.10283739
Gong TR, Wei L, Huang CW, et al., 2023b. Holographic MIMO communications with arbitrary surface placements: near-field LoS channel model and capacity limit. IEEE J Sel Areas Commun, 42(6):1549–1566. https://doi.org/10.1109/JSAC.2024.3389126
Gong TR, Gavriilidis P, Ji R, et al., 2023c. Holographic MIMO communications: theoretical foundations, enabling technologies, and future directions. IEEE Commun Surv Tut, 26(1):196–257. https://doi.org/10.1109/COMST.2023.3309529
Gong TR, Huang CW, He JG, et al., 2023d. A transmit-receive parameter separable electromagnetic channel model for LoS holographic MIMO. Proc IEEE Global Communications Conf, p.5701–5706. https://doi.org/10.1109/GLOBECOM54140.2023.10437544
Gürgünoğlu D, Björnson E, Fodor G, 2024. Combating interoperator pilot contamination in reconfigurable intelligent surfaces assisted multi-operator networks. IEEE Trans Commun, 72(9):5884–5895. https://doi.org/10.1109/TCOMM.2024.3390095
Han C, Bicen AO, Akyildiz IF, 2015. Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band. IEEE Trans Wirel Commun, 14(5):2402–2412. https://doi.org/10.1109/TWC.2014.2386335
Han C, Chen YH, Yan LF, et al., 2024. Cross far- and near-field wireless communications in terahertz ultra-large antenna array systems. IEEE Wirel Commun, 31(3):148–154. https://doi.org/10.1109/MWC.003.2300004
Han JQ, Li L, Yi H, et al., 2018. Versatile orbital angular momentum vortex beam generator based on reconfigurable reflective metasurface. Jpn J Appl Phys, 57(12):120303. https://doi.org/10.7567/JJAP.57.120303
Han Y, Jin S, Wen CK, et al., 2020. Channel estimation for extremely large-scale massive MIMO systems. IEEE Wirel Commun Lett, 9(5):633–637. https://doi.org/10.1109/LWC.2019.2963877
Haneda K, Takada JI, Kobayashi T, 2006. A parametric UWB propagation channel estimation and its performance validation in an anechoic chamber. IEEE Trans Microw Theory Technol, 54(4):1802–1811. https://doi.org/10.1109/TMTT.2006.871990
Hu S, Ilter MC, Wang H, 2022. Near-field beamforming for large intelligent surfaces. IEEE 33rd Annual Int Symp on Personal, Indoor and Mobile Radio Communications, p.1367–1373. https://doi.org/10.1109/PIMRC54779.2022.9977582
Hu XY, Zhang Y, Yang LX, et al., 2024. Securing near-field wideband MIMO communications via true-time delayer-based hybrid beamfocusing. IEEE Trans Wirel Commun, 23(10):13562–13578. https://doi.org/10.1109/TWC.2024.3403995
Hu ZL, Ye QB, Huang YX, et al., 2024. Joint range-velocity-azimuth estimation for OFDM-based integrated sensing and communication. IEEE Trans Wirel Commun, 23(10):12933–12948. https://doi.org/10.1109/TWC.2024.3397312
Huawei, 2009a. R1-092364 Consideration on CSI-RS Design for CoMP and Text Proposal to 36.814. https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_57b/Docs/R1-092364.zip
Huawei, 2009b. R1-093031 Consideration on CSI-RS Design for CoMP and Text Proposal to 36.814. https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_58/Docs/R1-093031.zip
IMT-2030 (6G) Promotion Group, 2022. 6G Typical Scenarios and Key Capabilities White Paper (in Chinese). https://www.imt2030.org.cn/html/default/zhongwen/chengguofabu/baipishu/index.html?index=2
ITU, 2023. WRC-23 Booklet: Agenda and Relevant Resolutions. https://www.itu.int/wrc-23/booklet-wrc-23/
ITU-R WP5D, 2023. Framework and Overall Objectives of the Future Development of IMT for 2030 and Beyond. https://www.itu.int/rec/R-REC-M.2160/en
Ji R, Chen S, Huang CW, et al., 2023. Extra DoF of near-field holographic MIMO communications leveraging evanescent waves. IEEE Wirel Commun Lett, 12(4):580–584. https://doi.org/10.1109/LWC.2023.3234003
Jiang JS, Ingram MA, 2005. Spherical-wave model for short-range MIMO. IEEE Trans Commun, 53(9):1534–1541. https://doi.org/10.1109/TCOMM.2005.852842
Jiang YH, Gao FF, 2023. Electromagnetic channel model for near field MIMO systems in the half space. IEEE Commun Lett, 27(2):706–710. https://doi.org/10.1109/LCOMM.2022.3229445
Kadlimatti R, Parimi PV, 2019. Millimeter-wave nondiffracting circular Airy OAM beams. IEEE Trans Antenn Propag, 67(1):260–269. https://doi.org/10.1109/TAP.2018.2876713
Karstensen A, Fan W, Carton I, et al., 2016. Comparison of ray tracing simulations and channel measurements at mmWave bands for indoor scenarios. 10th European Conf on Antennas and Propagation, p.1–5. https://doi.org/10.1109/EuCAP.2016.7481361
Khonina SN, Kazanskiy NL, Karpeev SV, et al., 2020. Bessel beam: significance and applications—a progressive review. Micromachines, 11(11):997. https://doi.org/10.3390/mi11110997
Lee A, Ju H, Kim S, et al., 2022. Intelligent near-field channel estimation for terahertz ultra-massive MIMO systems. Global Communications Conf, p.5390–5395. https://doi.org/10.1109/GLOBECOM48099.2022.10001612
Lee D, Sasaki H, Yagi Y, et al., 2023. Orbital angular momentum multiplexing using radio wave and its extension to multishape radio. J Lightw Technol, 41(7):1985–1996. https://doi.org/10.1109/JLT.2022.3223366
Lei H, Zhang JY, Xiao HH, et al., 2024. Channel estimation for XL-MIMO systems with polar-domain multi-scale residual dense network. IEEE Trans Veh Technol, 73(1):1479–1484. https://doi.org/10.1109/TVT.2023.3311010
Li BQ, Zhu X, Jiang YF, et al., 2022. Cooperative time synchronization and parameter estimation via broadcasting for cell-free massive MIMO networks. Proc IEEE Wireless Communications and Networking Conf, p.2100–2105. https://doi.org/10.1109/WCNC51071.2022.9771548
Li JZ, Ai B, He RS, et al., 2018. The 3D spatial non-stationarity and spherical wavefront in massive MIMO channel measurement. Proc 10th Int Conf on Wireless Communications and Signal Processing, p.1–6. https://doi.org/10.1109/WCSP.2018.8555869
Li L, Xue H, Feng Q, 2018. Research progresses in theory and applications of vortex electromagnetic waves. J Microw, 34(2):1–12 (in Chinese). https://doi.org/10.14183/j.cnki.1005-6122.201802001
Li L, Zhang R, Cui TJ, 2023. Information metasurfaces and reconfigurable intelligent surfaces. J Inform Intell, 1(3):179–181. https://doi.org/10.1016/j.jiixd.2023.07.001
Li MT, Yuan ZQ, Lyu YJ, et al., 2023. Gigantic MIMO channel characterization: challenges and enabling solutions. IEEE Commun Mag, 61(10):140–146. https://doi.org/10.1109/MCOM.001.2200969
Li N, Fan JB, Long WX, et al., 2023. Misalignment-robust OAM multi-mode multiplexing with index modulation based on UCA samples learning. IEEE 34th Annual Int Symp on Personal, Indoor and Mobile Radio Communications, p.1–5. https://doi.org/10.1109/PIMRC56721.2023.10294073
Li RW, Sun S, Tao MX, 2023. Applicable regions of spherical and plane wave models for extremely large-scale array communications. https://arxiv.org/abs/2301.06036
Li XR, Lu HQ, Zeng Y, et al., 2022. Near-field modeling and performance analysis of modular extremely large-scale array communications. IEEE Commun Lett, 26(7):1529–1533. https://doi.org/10.1109/LCOMM.2022.3172437
Li XR, Lu HQ, Zeng Y, et al., 2023a. Modular extremely large-scale array communication: near-field modelling and performance analysis. China Commun, 20(4):132–152. https://doi.org/10.23919/JCC.fa.2022-0715.202304
Li XR, Dong ZJ, Zeng Y, et al., 2023b. Near-field beam focusing pattern and grating lobe characterization for modular XL-array. IEEE Global Communications Conf, p.4068–4073. https://doi.org/10.1109/GLOBECOM54140.2023.10436773
Li XR, Dong ZJ, Zeng Y, et al., 2024. Multi-user modular XL-MIMO communications: near-field beam focusing pattern and user grouping. IEEE Trans Wirel Commun, 23(10):13766–13781. https://doi.org/10.1109/TWC.2024.3404659
Li ZR, Gao Z, Li T, 2023. Sensing user’s channel and location with terahertz extra-large reconfigurable intelligent surface under hybrid-field beam squint effect. IEEE J Sel Top Signal Process, 17(4):893–911. https://doi.org/10.1109/JSTSP.2023.3278942
Lian YD, Qi X, Wang YH, et al., 2022. OAM beam generation in space and its applications: a review. Opt Lasers Eng, 151:106923. https://doi.org/10.1016/j.optlaseng.2021.106923
Liang JC, Zhang L, Luo ZJ, et al., 2024. A filtering reconfigurable intelligent surface for interference-free wireless communications. Nat Commun, 15(1):3838. https://doi.org/10.1038/s41467-024-47865-6
Lin MT, Gao Y, Liu PG, et al., 2017. Theoretical analyses and design of circular array to generate orbital angular momentum. IEEE Trans Antenn Propag, 65(7):3510–3519. https://doi.org/10.1109/TAP.2017.2700160
Liu J, Yang G, Liu YW, et al., 2024. RIS empowered near-field covert communications. IEEE Trans Wirel Commun, 23(10):15477–15492. https://doi.org/10.1109/TWC.2024.3430328
Liu LF, Oestges C, Poutanen J, et al., 2012. The COST 2100 MIMO channel model. IEEE Wirel Commun, 19(6):92–99. https://doi.org/10.1109/MWC.2012.6393523
Liu Q, Chen ZN, Liu YN, et al., 2018. Circular polarization and mode reconfigurable wideband orbital angular momentum patch array antenna. IEEE Trans Antenn Propag, 66(4):1796–1804. https://doi.org/10.1109/TAP.2018.2803757
Liu W, Ren H, Pan CH, et al., 2023a. Deep learning based beam training for extremely large-scale massive MIMO in near-field domain. IEEE Commun Lett, 27(1):170–174. https://doi.org/10.1109/LCOMM.2022.3210042
Liu W, Pan CH, Ren H, et al., 2023b. Low-overhead beam training scheme for extremely large-scale RIS in near field. IEEE Trans Commun, 71(8):4924–4940. https://doi.org/10.1109/TCOMM.2023.3278728
Liu W, Pan CH, Ren H, et al., 2024a. Near-field multiuser beam-training for extremely large-scale MIMO systems. IEEE Trans Commun, early access. https://doi.org/10.1109/TCOMM.2024.3468208
Liu W, Pan CH, Ren H, et al., 2024b. NMBEnet: efficient near-field mmWave beam training for multiuser OFDM systems using sub-6 GHz pilots. https://arxiv.org/abs/2404.15469
Liu YM, Zhang JH, Zhang YX, et al., 2024. A shared cluster-based stochastic channel model for integrated sensing and communication systems. IEEE Trans Veh Technol, 73(5):6032–6044. https://doi.org/10.1109/TVT.2023.3337648
Liu YW, Wang ZL, Xu JQ, et al., 2023a. Near-field communications: a tutorial review. IEEE Open J Commun Soc, 4: 1999–2049. https://doi.org/10.1109/OJCOMS.2023.3305583
Liu YW, Xu JQ, Wang ZL, et al., 2023b. Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions. Front Inform Technol Electron Eng, 24(12):1689–1707. https://doi.org/10.1631/FITEE.2300490
Liu ZL, Zhang JY, Liu ZH, et al., 2024. Cell-free XL-MIMO meets multi-agent reinforcement learning: architectures, challenges, and future directions. IEEE Wirel Commun, 31(4):155–162. https://doi.org/10.1109/MWC.007.2300176
Long WX, Chen R, Moretti M, et al., 2021a. AoA estimation for OAM communication systems with mode-frequency multi-time ESPRIT method. IEEE Trans Veh Technol, 70(5):5094–5098. https://doi.org/10.1109/TVT.2021.3070358
Long WX, Chen R, Moretti M, et al., 2021b. Joint spatial division and coaxial multiplexing for downlink multi-user OAM wireless backhaul. IEEE Trans Broadcast, 67(4):879–893. https://doi.org/10.1109/TBC.2021.3081869
Long WX, Chen R, Moretti M, 2023. Recursive ESPRIT algorithm for multi-user OAM low-overhead AoA estimation. IEEE Trans Veh Technol, 72(2):2672–2677. https://doi.org/10.1109/TVT.2022.3212109
Lu HQ, Zeng Y, 2021. How does performance scale with antenna number for extremely large-scale MIMO? Proc IEEE Int Conf on Communications, p.1–6. https://doi.org/10.1109/ICC42927.2021.9500972
Lu HQ, Zeng Y, 2022. Communicating with extremely large-scale array/surface: unified modeling and performance analysis. IEEE Trans Wirel Commun, 21(6):4039–4053. https://doi.org/10.1109/TWC.2021.3126384
Lu HQ, Zeng Y, You CS, et al., 2024. A tutorial on near-field XL-MIMO communications towards 6G. IEEE Commun Surv Tut, 26(4):2213–2257. https://doi.org/10.1109/COMST.2024.3387749
Lu Y, Dai LL, 2023. Near-field channel estimation in mixed LoS/NLoS environments for extremely large-scale MIMO systems. IEEE Trans Commun, 71(6):3694–3707. https://doi.org/10.1109/TCOMM.2023.3260242
Lyu YJ, Yuan ZQ, Zhang FC, et al., 2023. Virtual antenna array for W-band channel sounding: design, implementation, and experimental validation. IEEE J Sel Top Signal Process, 17(4):729–744. https://doi.org/10.1109/JSTSP.2023.3301135
McGloin D, Dholakia K, 2005. Bessel beams: diffraction in a new light. Contemp Phys, 46(1):15–28. https://doi.org/10.1080/0010751042000275259
Meng XS, Chen XM, Yang L, et al., 2020. Launcher of high-order Bessel vortex beam carrying orbital angular momentum by designing anisotropic holographic meta-surface. Appl Phys Lett, 117(24):243503. https://doi.org/10.1063/5.0031139
Mohammadi SM, Daldorff LKS, Bergman JES, et al., 2010. Orbital angular momentum in radio—a system study. IEEE Trans Antenn Propag, 58(2):565–572. https://doi.org/10.1109/TAP.2009.2037701
Mohsan SAH, Qian H, Amjad H, 2023. A comprehensive review of optical wireless power transfer technology. Front Inform Technol Electron Eng, 24(6):767–800. https://doi.org/10.1631/FITEE.2100443
Molaei AM, Zakeri B, Andargoli SMH, 2020. Components separation algorithm for localization and classification of mixed near-field and far-field sources in multipath propagation. IEEE Tran Signal Process, 68:404–419. https://doi.org/10.1109/TSP.2019.2961226
Molaei AM, del Hougne P, Fusco V, et al., 2022. Efficient joint estimation of DOA, range and reflectivity in near-field by using mixed-order statistics and a symmetric MIMO array. IEEE Trans Veh Technol, 71(3):2824–2842. https://doi.org/10.1109/TVT.2021.3138251
Mukherjee P, Gupta B, 2008. Terahertz (THz) frequency sources and antennas—a brief review. Int J Infrared Milli Waves, 29(12):1091–1102. https://doi.org/10.1007/s10762-008-9423-0
Myers NJ, Heath RW, 2022. InFocus: a spatial coding technique to mitigate misfocus in near-field LoS beamforming. IEEE Trans Wirel Commun, 21(4):2193–2209. https://doi.org/10.1109/TWC.2021.3110011
Nepa P, Buffi A, 2017. Near-field-focused microwave antennas: near-field shaping and implementation. IEEE Antenn Propag Mag, 59(3):42–53. https://doi.org/10.1109/MAP.2017.2686118
Next G Alliance, 2022. Next G Alliance Report: 6G Technologies. https://www.nextgalliance.org/wp-content/uploads/dlm_uploads/2022/07/TWG-report-6G-technologies.pdf
Ng KH, Tameh EK, Doufexi A, et al., 2007. Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data. IEEE Trans Veh Technol, 56(3):1019–1032. https://doi.org/10.1109/TVT.2007.895606
Ning BY, Chen Z, Chen WR, et al., 2020. Channel estimation and transmission for intelligent reflecting surface assisted THz communications. Proc IEEE Int Conf on Communications, p.1–7. https://doi.org/10.1109/ICC40277.2020.9149153
Ouyang CJ, Liu YW, Yang HW, 2022. Performance of downlink and uplink integrated sensing and communications (ISAC) systems. IEEE Wirel Commun Lett, 11(9):1850–1854. https://doi.org/10.1109/LWC.2022.3184409
Ouyang CJ, Liu YW, Zhang XQ, et al., 2023. Near-field communications: a degree-of-freedom perspective. https://arxiv.org/abs/2308.00362
Pan YJ, Pan CH, Jin S, et al., 2023. RIS-aided near-field localization and channel estimation for the terahertz system. IEEE J Sel Top Signal Process, 17(4):878–892. https://doi.org/10.1109/JSTSP.2023.3285431
Payami S, Tufvesson F, 2012. Channel measurements and analysis for very large array systems at 2.6 GHz. Proc 6th European Conf on Antennas and Propagation, p.433–437. https://doi.org/10.1109/EuCAP.2012.6206345
Pizzo A, Marzetta T, Sanguinetti L, 2020a. Holographic MIMO communications under spatially-stationary scattering. Proc 54th Asilomar Conf on Signals, Systems, and Computers, p.702–706. https://doi.org/10.1109/IEEECONF51394.2020.9443506
Pizzo A, Marzetta TL, Sanguinetti L, 2020b. Spatially-stationary model for holographic MIMO small-scale fading. IEEE J Sel Areas Commun, 38(9):1964–1979. https://doi.org/10.1109/JSAC.2020.3000877
Pizzo A, Sanguinetti L, Marzetta TL, 2022a. Fourier plane-wave series expansion for holographic MIMO communications. IEEE Trans Wirel Commun, 21(9):6890–6905. https://doi.org/10.1109/TWC.2022.3152965
Pizzo A, Torres ADJ, Sanguinetti L, et al., 2022b. Nyquist sampling and degrees of freedom of electromagnetic fields. IEEE Trans Signal Process, 70:3935–3947. https://doi.org/10.1109/TSP.2022.3183445
Pizzo A, Sanguinetti L, Marzetta TL, 2022c. Spatial characterization of electromagnetic random channels. IEEE Open J Commun Soc, 3:847–866. https://doi.org/10.1109/OJCOMS.2022.3171409
Ramezani P, Kosasih A, Irshad A, et al., 2023. Exploiting the depth and angular domains for massive near-field spatial multiplexing. IEEE BITS Inform Theory Mag, 3(1):14–26. https://doi.org/10.1109/MBITS.2023.3322670
Raschkowski L, Kyösti P, Kusume K, et al., 2015. METIS Channel Models. Technical Report No. ICT-317669-METIS/D1.4 Ver3, ICT. https://www.researchgate.net/publication/282807948_METIS_Channel_Models_D14
Rogalin R, Bursalioglu OY, Papadopoulos H, et al., 2014. Scalable synchronization and reciprocity calibration for distributed multiuser MIMO. IEEE Trans Wirel Commun, 13(4):1815–1831. https://doi.org/10.1109/twc.2014.030314.130474
Sasaki H, Lee D, Fukumoto H, et al., 2018. Experiment on over-100-Gbps wireless transmission with OAM-MIMO multiplexing system in 28-GHZ band. Proc IEEE Global Communications Conf, p.1–6. https://doi.org/10.1109/GLOCOM.2018.8647361
Selvan KT, Janaswamy R, 2017. Fraunhofer and Fresnel distances: unified derivation for aperture antennas. IEEE Antenn Propag Mag, 59(4):12–15. https://doi.org/10.1109/MAP.2017.2706648
Sherman J, 1962. Properties of focused apertures in the Fresnel region. IRE Trans Antenn Propag, 10(4):399–408. https://doi.org/10.1109/TAP.1962.1137900
Shtaiwi E, Zhang HL, Vishwanath S, et al., 2021. Channel estimation approach for RIS assisted MIMO systems. IEEE Trans Cogn Commun Netw, 7(2):452–465. https://doi.org/10.1109/TCCN.2021.3075413
Shuang Y, Zhao HT, Ji W, et al., 2020. Programmable high-order OAM-carrying beams for direct-modulation wireless communications. IEEE J Emerg Sel Top Circ Syst, 10(1):29–37. https://doi.org/10.1109/JETCAS.2020.2973391
Sun S, Li RW, Han C, et al., 2023. How to differentiate between near field and far field: revisiting the Rayleigh distance. https://arxiv.org/abs/2309.13238
Tan JD, Su Z, Long YL, 2015. A full 3-D GPU-based beam-tracing method for complex indoor environments propagation modeling. IEEE Trans Antenn Propag, 63(6):2705–2718. https://doi.org/10.1109/TAP.2015.2415036
Tarboush S, Ali A, Al-Naffouri TY, 2024. Cross-field channel estimation for ultra massive-MIMO THz systems. IEEE Trans Wirel Commun, 23(8):8619–8635. https://doi.org/10.1109/TWC.2024.3352894
Thidé B, Then H, Sjöholm J, et al., 2007. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys Rev Lett, 99(8):087701. https://doi.org/10.1103/PhysRevLett.99.087701
Verdu S, 2002. Spectral efficiency in the wideband regime. IEEE Trans Inform Theory, 48(6):1319–1343. https://doi.org/10.1109/TIT.2002.1003824
Wang C, Zhang JH, Tian L, et al., 2017. The spatial evolution of clusters in massive MIMO mobile measurement at 3.5 GHz. Proc IEEE 85th Vehicular Technology Conf, p.1–6. https://doi.org/10.1109/VTCSpring.2017.8108242
Wang H, Wang WM, Zhang FC, et al., 2024. On efficient echo suppression with phaseless data in the joint frequency and spatial domain for antenna pattern measurement in a non-anechoic chamber. IEEE Trans Antenn Propag, 72(3):2968–2973. https://doi.org/10.1109/TAP.2024.3352274
Wang HZ, Zeng Y, 2022. SNR scaling laws for radio sensing with extremely large-scale MIMO. IEEE Int Conf on Communications Workshops, p.121–126. https://doi.org/10.1109/ICCWorkshops53468.2022.9814501
Wang HZ, Zeng Y, 2023. Can sparse arrays outperform collocated arrays for future wireless communications? IEEE Globecom Workshops, p.667–672. https://doi.org/10.1109/GCWkshps58843.2023.10465094
Wang HZ, Xiao ZQ, Zeng Y, 2024a. Cramér-Rao bounds for near-field sensing with extremely large-scale MIMO. IEEE Trans Signal Process, 72:701–717. https://doi.org/10.1109/TSP.2024.3350329
Wang HZ, Feng C, Zeng Y, et al., 2024b. Enhancing spatial multiplexing and interference suppression for near- and far-field communications with sparse MIMO. https://arxiv.org/abs/2408.01956
Wang JF, Ma Y, Yi N, et al., 2022. Network-ELAA beamforming and coverage analysis for eMBB/URLLC in spatially non-stationary Rician channels. IEEE Int Conf on Communications, p.3508–3513. https://doi.org/10.1109/ICC45855.2022.9839081
Wang P, Li YH, Yuan XJ, et al., 2014. Tens of gigabits wireless communications over E-band LoS MIMO channels with uniform linear antenna arrays. IEEE Trans Wirel Commun, 13(7):3791–3805. https://doi.org/10.1109/TWC.2014.2318053
Wang Q, Ai B, Matolak DW, et al., 2017. Spatial variation analysis for measured indoor massive MIMO channels. IEEE Access, 5:20828–20840. https://doi.org/10.1109/ACCESS.2017.2736522
Wei L, Huang CW, Alexandropoulos GC, et al., 2023. Tripolarized holographic MIMO surfaces for near-field communications: channel modeling and precoding design. IEEE Trans Wirel Commun, 22(12):8828–8842. https://doi.org/10.1109/TWC.2023.3266298
Wu CY, You CS, Liu YW, et al., 2024. Two-stage hierarchical beam training for near-field communications. IEEE Trans Veh Technol, 73(2):2032–2044. https://doi.org/10.1109/TVT.2023.3311868
Wu QQ, Zhang R, 2019. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans Wirel Commun, 18(11):5394–5409. https://doi.org/10.1109/TWC.2019.2936025
Wu ZD, Dai LL, 2023. Multiple access for near-field communications: SDMA or LDMA? IEEE J Sel Areas Commun, 41(6):1918–1935. https://doi.org/10.1109/JSAC.2023.3275616
Wu ZD, Cui MY, Dai LL, 2023. Enabling more users to benefit from near-field communications: from linear to circular array. IEEE Trans Wirel Commun, 23(4):3735–3748. https://doi.org/10.1109/TWC.2023.3310912
Xiao J, Wang J, Chen Z, et al., 2023. U-MLP-based hybrid-field channel estimation for XL-RIS assisted millimeter-wave MIMO systems. IEEE Wirel Commun Lett, 12(6):1042–1046. https://doi.org/10.1109/10.1109/LWC.2023.3259465
Xie ZY, Liu YW, Xu JQ, et al., 2023. Performance analysis for near-field MIMO: discrete and continuous aperture antennas. IEEE Wirel Commun Lett, 12(12):2258–2262. https://doi.org/10.1109/LWC.2023.3317492
Xu HQ, Zhao YJ, Mo LM, et al., 2012. Inter-cell antenna calibration for coherent joint transmission in TDD system. IEEE Globecom Workshops, p.297–301. https://doi.org/10.1109/GLOCOMW.2012.6477586
Xu HX, Tang P, Zhang JH, et al., 2024. An empirical study on near-field, spatial non-stationarity, and beam misalignment characteristics of THz XL-MIMO channels at 132 GHz. IEEE Int Conf on Communications Workshops, p.744–749. https://doi.org/10.1109/ICCWorkshops59551.2024.10615710
Xu P, Zhang KY, Liu HX, et al., 2023. Dual-band metasurface generating multiple OAM beams independently in full polarizations. Opt Expr, 31(20):32637–32651. https://doi.org/10.1364/OE.497975
Xue H, Zhang S, Zhao SH, et al., 2022a. Generation of the Airy beam based on the truncated asymptotic expression of the Airy function using a transmissive metasurface. Opt Expr, 30(24):43842–43851. https://doi.org/10.1364/OE.472207
Xue H, Li RJ, Xu P, et al., 2022b. Model construction, theoretical analysis, and miniaturized implementation of high-order deflected multivortex beams with uniform elliptical array. IEEE Trans Antenn Propag, 70(8):7234–7239. https://doi.org/10.1109/TAP.2022.3164238
Xue H, Han JQ, Zhang S, et al., 2023. Co-modulation of spin angular momentum and high-order orbital angular momentum based on anisotropic holographic metasurfaces. IEEE Trans Antenn Propag, 71(5):4594–4599. https://doi.org/10.1109/TAP.2023.3243795
Yaghjian A, 1986. An overview of near-field antenna measurements. IEEE Trans Antenn Propag, 34(1):30–45. https://doi.org/10.1109/TAP.1986.1143727
Yamada W, Kita N, Sugiyama T, et al., 2009. Plane-wave and vector-rotation approximation technique for reducing computational complexity to simulate MIMO propagation channel using ray-tracing. IEICE Trans Commun, E92-B(12):3850–3860. https://doi.org/10.1587/transcom.E92.B.3850
Yang LJ, Sun S, Sha WEI, et al., 2023. Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization. Front Inform Technol Electron Eng, 24(12):1776–1790. https://doi.org/10.1631/FITEE.2200471
Ye M, Liang X, Pan CH, et al., 2024. GAN based near-field channel estimation for extremely large-scale MIMO systems. https://arxiv.org/abs/2402.17281
Yu SX, Li L, Shi GM, et al., 2016. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl Phys Lett, 108(12):1211903. https://doi.org/10.1063/1.4944789
Yu SX, Li L, Kou N, 2017. Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces. Opt Mater Expr, 7(9):3312–3321. https://doi.org/10.1364/OME.7.003312
Yu WT, Shen YF, He HT, et al., 2023. An adaptive and robust deep learning framework for THz ultra-massive MIMO channel estimation. IEEE J Sel Top Signal Process, 17(4):761–776. https://doi.org/10.1109/JSTSP.2023.3282832
Yuan YF, Zhao YJ, Zong BQ, et al., 2020. Potential key technologies for 6G mobile communications. Sci China Inform Sci, 63(8):183301. https://doi.org/10.1007/s11432-019-2789-y
Yuan ZQ, Zhang JH, Ji YL, et al., 2023a. Spatial non-stationary near-field channel modeling and validation for massive MIMO systems. IEEE Trans Antenn Propag, 71(1):921–933. https://doi.org/10.1109/TAP.2022.3218759
Yuan ZQ, Zhang FC, Zhang YX, et al., 2023b. On phase mode selection in the frequency-invariant beamformer for near-field mmWave channel characterization. IEEE Trans Antenn Propag, 71(11):8975–8986. https://doi.org/10.1109/TAP.2023.3316791
Yuan ZQ, Lyu YJ, Zhang JH, et al., 2023c. Sub-THz ray tracing simulation and experimental validation for indoor scenarios. IEEE Int Mediterranean Conf on Communications and Networking, p.7–11. https://doi.org/10.1109/10.1109/MeditCom58224.2023.10266598
Yuan ZQ, Zhang JH, Degli-Esposti V, et al., 2024. Efficient ray-tracing simulation for near-field spatial non-stationary mmWave massive MIMO channel and its experimental validation. IEEE Trans Wirel Commun, 23(8):8910–8923. https://doi.org/10.1109/TWC.2024.3357071
Yue SH, Zeng SH, Liu L, et al., 2023. Channel estimation for holographic communications in hybrid near-far field. Proc IEEE Global Communications Conf, p.6133–6138. https://doi.org/10.1109/GLOBECOM54140.2023.10436807
Zhang FC, Fan W, 2019. Near-field ultra-wideband mmWave channel characterization using successive cancellation beamspace UCA algorithm. IEEE Trans Veh Technol, 68(8):7248–7259. https://doi.org/10.1109/TVT.2019.2926783
Zhang HY, Shlezinger N, Guidi F, et al., 2022. Beam focusing for near-field multiuser MIMO communications. IEEE Trans Wirel Commun, 21(9):7476–7490. https://doi.org/10.1109/TWC.2022.3158894
Zhang J, Yang G, Ye QB, et al., 2024. Low-complexity joint azimuth-range-velocity estimation for integrated sensing and communication with OFDM waveform. https://arxiv.org/abs/2405.09443
Zhang JH, Zhang YX, Yu YW, et al., 2017. 3-D MIMO: how much does it meet our expectations observed from channel measurements? IEEE J Sel Areas Commun, 35(8):1887–1903. https://doi.org/10.1109/JSAC.2017.2710758
Zhang JH, Zheng Z, Zhang YX, et al., 2018. 3D MIMO for 5G NR: several observations from 32 to massive 256 antennas based on channel measurement. IEEE Commun Mag, 56(3):62–70. https://doi.org/10.1109/MCOM.2018.1700846
Zhang JH, Lin JX, Tang P, et al., 2024a. Deterministic ray tracing: a promising approach to THZ channel modeling in 6G deployment scenarios. IEEE Commun Mag, 62(2):48–54. https://doi.org/10.1109/MCOM.001.2200486
Zhang JH, Miao HY, Tang P, et al., 2024b. New mid-band for 6G: several considerations from the channel propagation characteristics perspective. IEEE Commun Mag, 63(1):175–180. https://doi.org/10.1109/MCOM.001.2300708
Zhang P, Chen JQ, Yang XL, et al., 2018. Recent research on massive MIMO propagation channels: a survey. IEEE Commun Mag, 56(12):22–29. https://doi.org/10.1109/MCOM.2018.1800196
Zhang S, Di B, Zhang H, et al., 2024. Hierarchical codebook design using scale-changeable reconfigurable holographic surfaces in near-far field communications. Proc IEEE Global Commun Conf.
Zhang SP, Zhang YT, Di BY, 2023. Near-far field codebook design for IOS-aided multi-user communications. IEEE Global Communications Conf, p.2888–2893. https://doi.org/10.1109/GLOBECOM54140.2023.10436845
Zhang X, Zhang HY, Eldar YC, 2024. Near-field sparse channel representation and estimation in 6G wireless communications. IEEE Trans Commun, 72(1):450–464. https://doi.org/10.1109/TCOMM.2023.3322449
Zhang XY, Wang ZN, Zhang HY, et al., 2023. Near-field channel estimation for extremely large-scale array communications: a model-based deep learning approach. IEEE Commun Lett, 27(4):1155–1159. https://doi.org/10.1109/LCOMM.2023.3245084
Zhang Y, Alkhateeb A, 2023. Deep learning of near field beam focusing in terahertz wideband massive MIMO systems. IEEE Wirel Commun Lett, 12(3):535–539. https://doi.org/10.1109/LWC.2022.3233566
Zhang YC, Zhang HY, Xiao S, et al., 2024. Near-field wideband secure communications: an analog beamfocusing approach. IEEE Trans Signal Process, 72:2173–2187. https://doi.org/10.1109/TSP.2024.3390177
Zhang YT, Di BY, Zhang HL, et al., 2022. Codebook design for large reconfigurable refractive surface enabled holographic MIMO systems. Proc IEEE Global Communications Conf, p.639–644. https://doi.org/10.1109/GLOBECOM48099.2022.10001733
Zhang YT, Di BY, Zhang HL, et al., 2023. Near-far field beamforming for holographic multiple-input multiple-output. J Commun Inform Netw, 8(2):99–110. https://doi.org/10.23919/JCIN.2023.10173734
Zhang Z, Zhang JH, Zhang YX, et al., 2023. Deep reinforcement learning based dynamic beam selection in dualband communication systems. IEEE Trans Wirel Commun, 23(4):2591–2606. https://doi.org/10.1109/TWC.2023.3300830
Zhang Z, Liu YW, Wang ZL, et al., 2024. Physical layer security in near-field communications. IEEE Trans Veh Technol, 73(7):10761–10766. https://doi.org/10.1109/TVT.2024.3366115
Zhao YJ, 2023. Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions. Front Inform Technol Electron Eng, 24(12):1669–1688. https://doi.org/10.1631/FITEE.2200666
Zhao YJ, 2024a. Cascaded channel decoupling based solution for RIS regulation matrix. Intell Converg Netw, 5(1):19–27. https://doi.org/10.23919/ICN.2024.0002
Zhao YJ, 2024b. Reconfigurable intelligent surface constructing 6G near-field networks. Mob Commun, 48(4):1–11 (in Chinese). https://doi.org/10.3969/j.issn.1006-1010.20240327-0003
Zhao YJ, 2024c. RIS constructing 6G near-field networks: opportunities and challenges. https://arxiv.org/abs/2403.15390
Zhao YJ, 2024d. RIS assisted wireless networks: collaborative regulation, deployment mode and field testing. IET Commun, 18:1665–1682. https://doi.org/10.1049/cmu2.12808
Zhao YJ, Jian MN, 2021. Applications and challenges of reconfigurable intelligent surface for 6G networks. https://arxiv.org/abs/2108.13164
Zhao YJ, Lv X, 2022. Network coexistence analysis of RIS-assisted wireless communications. IEEE Access, 10: 63442–63454. https://doi.org/10.1109/ACCESS.2022.3183139
Zhao YJ, Yu GH, Xu HQ, 2019. 6G mobile communication networks: vision, challenges, and key technologies. Sci Sin Inform, 49(8):963–987. https://doi.org/10.1360/N112019-00033
Zhao YJ, Dai LL, Zhang JH, et al., 2024. 6G Near-Field Technologies White Paper. FuTURE Forum, Nanjing, China. https://doi.org/10.12142/FuTURE.202404002
Zheng BX, Zhang R, 2022. Simultaneous transmit diversity and passive beamforming with large-scale intelligent reflecting surface. IEEE Trans Wirel Commun, 22(2):920–933. https://doi.org/10.1109/TWC.2022.3199426
Zheng BX, Ma TT, Yi X, et al., 2023. Intelligent reflecting surface-aided transmit diversity and performance analysis. IEEE Int Conf on Communications, p.2822–2827. https://doi.org/10.1109/ICC45041.2023.10279543
Zheng S, 2024. RIS(24)012008r3 (NWI), Reconfigurable Intelligent Surfaces: Near-Field Channel Modeling and Mechanics. ETSI ISG RIS. https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=70055
Zheng Z, Fu MC, Wang WQ, et al., 2018. Mixed far-field and near-field source localization based on subarray cross-cumulant. Signal Process, 150:51–56. https://doi.org/10.1016/j.sigpro.2018.03.020
Zhi KD, Pan CH, Ren H, et al., 2024. Performance analysis and low-complexity design for XL-MIMO with near-field spatial non-stationarities. IEEE J Sel Areas Commun, 42(6):1656–1672. https://doi.org/10.1109/JSAC.2024.3389128
Zhou KZ, He SL, Hong SH, et al., 2020. Spontaneous-focusing and self-healing of Airy-like beams. Results Phys, 19:103526. https://doi.org/10.1016/j.rinp.2020.103526
Zhou Z, Gao X, Fang J, et al., 2015. Spherical wave channel and analysis for large linear array in LoS conditions. Proc IEEE Globecom Workshops, p.1–6. https://doi.org/10.1109/GLOCOMW.2015.7414041
Zhu LP, Ma WY, Zhang R, 2023. Movable antennas for wireless communication: opportunities and challenges. IEEE Commun Mag, 62(6):114–120. https://doi.org/10.1109/MCOM.001.2300212
Zhuo BT, Gu JP, Duan W, et al., 2024. Extremely large-scale array system: cooperative NFC or FFC? IEEE Wirel Commun Lett, 13(5):1250–1254. https://doi.org/10.1109/LWC.2024.3367132
ZTE, 2011. R1-112261 Evaluation on the Impact of Timing Error between CoMP Transmission Points. https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_66/Docs/R1-112261.zip
Author information
Authors and Affiliations
Contributions
Yajun ZHAO initialized the project. All the authors drafted and revised the paper.
Corresponding authors
Ethics declarations
Yajun ZHAO and Linglong DAI are executive lead editors of this special issue. Jianhua ZHANG, Zhi CHEN, Yuanwei LIU, Chongwen HUANG, and Long LI are guest editors of this special issue. Ping ZHANG is the editor-in-chief of this special issue. Also, Jianhua ZHANG, Chau YUEN, and Ping ZHANG are executive associate editor-in-chief, editorial board member, and associate editor-in-chief of Frontiers of Information Technology & Electronic Engineering, respectively. They were not involved with the peer review process of this paper. All the authors declare that they have no conflict of interest.
Additional information
Project supported by the Natural Science Foundation of Hunan Province, China (No. 2022JJ40561), the Scientific Research Program of National University of Defense Technology, China (No. ZK22-46), and the National Natural Science Foundation of China (Nos. 61890542, 62001481, and 62071475)
Rights and permissions
Open access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third-party materials in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zhao, Y., Dai, L., Zhang, J. et al. Near-field communications: characteristics, technologies, and engineering. Front Inform Technol Electron Eng 25, 1580–1626 (2024). https://doi.org/10.1631/FITEE.2400576
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2400576
Key words
- 6G
- Near-field technology
- Channel model
- Codebook
- Non-diffractive beams
- Orbital angular momentum
- Engineering and standardization