Skip to main content
Log in

A numerical local orthogonal transform method for stratified waveguides

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Flattening of the interfaces is necessary in computing wave propagation along stratified waveguides in large range step sizes while using marching methods. When the supposition that there exists one horizontal straight line in two adjacent interfaces does not hold, the previously suggested local orthogonal transform method with an analytical formulation is not feasible. This paper presents a numerical coordinate transform and an equation transform to perform the transforms numerically for waveguides without satisfying the supposition. The boundary value problem is then reduced to an initial value problem by one-way reformulation based on the Dirichlet-to-Neumann (DtN) map. This method is applicable in solving long-range wave propagation problems in slowly varying waveguides with a multilayered medium structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamsson, L., Kreiss, H.O., 1994. Numerical solution of the coupled mode equations in duct acoustic. J. Comput. Phys., 111(1):1–14. [doi:10.1006/jcph.1994.1038]

    Article  MATH  MathSciNet  Google Scholar 

  • Andersson, A., 2008. A modified Schwarz-Christoffel mapping for regions with piecewise smooth boundaries. J. Comput. Appl. Math., 213(1):56–70. [doi:10.1016/j.cam.2006.12.025]

    Article  MATH  MathSciNet  Google Scholar 

  • Andersson, A., 2009. Modified Schwarz Christoffel mappings using approximate curve factors. J. Comput. Appl. Math., 233(4):1117–1127. [doi:10.1016/j.cam.2009.09.006]

    Article  MATH  MathSciNet  Google Scholar 

  • Cullum, J., 1971. Numerical differentiation and regularization. SIAM J. Numer. Anal., 8(2):254–265. [doi:10.1137/0708026]

    Article  MATH  MathSciNet  Google Scholar 

  • Delillo, T., Isakov, V., Valdivia, N., Wang, L., 2001. The detection of the source of acoustical noise in two dimensions. SIAM J. Appl. Math., 61(6):2104–2121. [doi:10.1137/S0036139900367152]

    Article  MATH  MathSciNet  Google Scholar 

  • Fishman, L., 1993. One-way wave propagation methods in direct and inverse scalar wave propagation modeling. Radio Sci., 28(5):865–876. [doi:10.1029/93RS01632]

    Article  MathSciNet  Google Scholar 

  • Fishman, L., Gautesen, A.K., Sun, A.K., 1997. Uniform high-frequency approximations of the square root Helmholtz operator symbol. Wave Motion, 26:127–161. [doi:10.1016/S0165-2125(97)00018-8]

    Article  MATH  MathSciNet  Google Scholar 

  • Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H., 1994. Computational Ocean Acoustics. American Institute of Physics, New York.

    Google Scholar 

  • Jin, B.T., Marin, L., 2008. The plane wave method for inverse problems associated with Helmholtz-type equations. Eng. Anal. Bound. Elem., 32(3):223–240. [doi:10.1016/j.enganabound.2007.08.005]

    Article  Google Scholar 

  • Jin, B.T., Zheng, Y., 2006. A meshless method for some inverse problems associated with the Helmholtz equation. Comput. Methods Appl. Mech. Eng., 195:2270–2288. [doi:10.1016/j.cma.2005.05.013]

    Article  MATH  MathSciNet  Google Scholar 

  • Larsson, E., Abrahamsson, L., 1998. Parabolic Wave Equation versus the Helmholtz Equation in Ocean Acoustics. In: DeSanto, J.A. (Ed.), Mathematics and Numerical Aspects of Wave Propagation. SIAM, Philadelphia, p.582–584.

    Google Scholar 

  • Lee, D., Pierce, A.D., 1995. Parabolic equation development in recent decade. J. Comput. Acoust., 3(2):95–173. [doi:10.1142/S0218396X95000070]

    Article  Google Scholar 

  • Li, P., Chen, Z.H., Zhu, J.X., 2008. An operator marching method for inverse problems in range dependent waveguides. Comput. Methods Appl. Mech. Eng., 197(49–50):4077–4091. [doi:10.1016/j.cma.2008.04.001]

    Article  MATH  MathSciNet  Google Scholar 

  • Lu, Y.Y., 1999. One-way large range step methods for Helmholtz waveguides. J. Comput. Phys., 152(1):231–250. [doi:10.1006/jcph.1999.6243]

    Article  MATH  MathSciNet  Google Scholar 

  • Lu, Y.Y., McLaughlin, J.R., 1996. The Riccati method for the Helmholtz equation. J. Acoust. Soc. Am., 100(3):1432–1446. [doi:10.1121/1.415990]

    Article  Google Scholar 

  • Lu, Y.Y., Huang, J., McLauphilin, J.R., 2001. Local orthogonal transformation and one-way methods for acoustics waveguides. Wave Motion, 34(2):193–207. [doi:10.1016/S0165-2125(00)00083-4]

    Article  MATH  Google Scholar 

  • Marin, L., 2005. A meshless method for the numerical solution of the Cauchy problem associated with three-dimensional Helmholtz-type equations. Appl. Math. Comput., 165(2):355–374. [doi:10.1016/j.amc.2004.04.052]

    Article  MATH  MathSciNet  Google Scholar 

  • Marin, L., Elliott, L., Heggs, P.J., Ingham, D.B., Lesnic, D., Wen, X., 2003. Conjugate gradientboundary element solution to the Cauchy problem for Helmholtz-type equations. Comput. Mech., 31:367–372. [doi:10.1007/s00466-003-0439-y]

    MATH  MathSciNet  Google Scholar 

  • Nilsson, B., 2002. Acoustic transmission in curved ducts with varying cross-sections. Proc. R. Soc. A, 458(2023):1555–1574. [doi:10.1098/rspa.2001.0910]

    Article  MATH  Google Scholar 

  • Tarppet, F.D., 1977. The Parabolic Approximation Method. In: Keller, J.B., Papadakis, J.S. (Eds.), Wave Propagation and Underwater Acoustics: Lecture Notes in Physics. Springer-Verlag, Berlin New York, 70:224–287. [doi:10.1007/3-540-08527-0]

    Google Scholar 

  • Zhu, J.X., Li, P., 2007. Local orthogonal transform for a class of acoustic waveguide. Progr. Nat. Sci., 17:18–28.

    Google Scholar 

  • Zhu, J.X., Li, P., 2008. Mathematical treatment of wave propagation in acoustic waveguides with n curved interfaces. J. Zhejiang Univ.-Sci. A, 9(10):1463–1472. [doi:10.1631/jzus.A0720064]

    Article  MATH  Google Scholar 

  • Zhu, J.X., Lu, Y.Y., 2002. Large range step method for acoustic waveguide with two layer media. Progr. Nat. Sci., 12:820–825.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-zhou Zhong.

Additional information

Project supported by the Program for New Century Excellent Talents in University (No. NCET-08-0450), the 985 II of Xi’an Jiaotong University, and the High Talented Person Scientific Research Start Project of North China University of Water Resources and Electric Power (No. 003001)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Zhong, Wz., Li, Gs. et al. A numerical local orthogonal transform method for stratified waveguides. J. Zhejiang Univ. - Sci. C 11, 998–1008 (2010). https://doi.org/10.1631/jzus.C0910732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910732

Key words

CLC number

Navigation