Skip to main content
Log in

Intelligent optimization of seam-line finding for orthophoto mosaicking with LiDAR point clouds

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

A detailed study was carried out to find optimal seam-lines for mosaicking of images acquired by an airborne light detection and ranging (LiDAR) system. High ground objects labeled as obstacles can be identified by delineating black holes from filtered point clouds obtained by filtering the raw laser scanning dataset. An innovative A* algorithm is proposed that can automatically make the seam-lines keep away from these obstacles in the registered images. This method can intelligently optimize the selection of seam-lines and improve the quality of orthophotos. A simulated grid image was first used to analyze the effect of different heuristic functions on path planning. Three subsets of LiDAR data from Xiüan, Dunhuang, and Changyang in Northwest China were obtained. A quantitative method including pixel intensity, hue, and texture was used. With our proposed method, 9.4%, 8.7%, and 9.8% improvements were achieved in Dunhuang, Xiüan, and Changyang, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aurenhammer, F., 1991. Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Comput. Surv., 23(3):345–405. [doi:10.1145/116873.116880]

    Article  Google Scholar 

  • Axelsson, P., 1999. Processing of laser scanner data algorithms and applications. ISPRS J. Photogr. Remote Sens., 54(2–3): 138–147. [doi:10.1016/S0924-2716(99)00008-8]

    Article  Google Scholar 

  • Bagchi, A., Mahanti, A., 1983. Search algorithms under different kinds of heuristics—a comparative study. J. ACM, 30(1):1–27. [doi:10.1145/322358.322359]

    Article  MathSciNet  MATH  Google Scholar 

  • Baltsavias, E.P., 1999a. Airborne laser scanning: existing systems and orther resources. ISPRS J. Photogr. Remote Sens., 54(2–3):164–198. [doi:10.1016/S0924-2716(99)00016-7]

    Article  Google Scholar 

  • Baltsavias, E.P., 1999b. A comparison between photo-grammetry and laser scanning. ISPRS J. Photogr. Remote Sens., 54(2–3):83–94. [doi:10.1016/S0924-2716(99)00014-3]

    Article  Google Scholar 

  • Brovelli, M.A., Cannata, M., Longoni, U.M., 2002. Managing and Processing LiDAR Data within GRASS. Proc. Open Source GIS-GRASS Users Conf., unpaginated CD-ROM.

  • Cherkassky, B.V., Goldberg, A.V., Radzik, T., 1996. Shortest paths algorithms: theory and experimental evaluation. Math. Program., 73(2):129–174. [doi:10.1007/BF02592101]

    Article  MathSciNet  MATH  Google Scholar 

  • Chon, J., Kim, H., 2006. Determination of the optimal seam-lines in image mosaicking with the dynamic programming (DP) on the converted cost space. LNCS, 4029:750–757.

    Google Scholar 

  • Davis, J., 1998. Mosaics of Scenes with Moving Objects. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.354–360. [doi:10.1109/CVPR.1998.698630]

  • Davis, J.C., 1986. Statistics and Data Analysis in Geology. Wiley, New York, p.656.

    Google Scholar 

  • Dechter, R., Pearl, J., 1985. Generalized best-first search strategies and the optimality of A*. J. ACM, 32(3):505–536. [doi:10.1145/3828.3830]

    Article  MathSciNet  MATH  Google Scholar 

  • Dechter, R., Pearl, J., 1988. The Optimality of A*. In: Kanal, L., Kumar, V. (Eds.), Search in Artificial Intelligence. Springer-Verlag, p.166–199.

  • Fernandez, E., Marti, R., 1999. GRASP for seam drawing in mosaicking of aerial photographic maps. J. Heurist., 5(2):181–197. [doi:10.1023/A:1009633811636]

    Article  Google Scholar 

  • Gelperin, D., 1977. On the optimality of A*. Artif. Intell., 8(1):69–76. [doi:10.1016/0004-3702(77)90005-4]

    Article  MathSciNet  MATH  Google Scholar 

  • Ghallab, M., Allard, D., 1983. A ɛ—an Efficient near Admissible Heuristic Search Algorithm. Proc. 8th Int. Joint Conf. on Artficial Intelligence, 2:789–791.

    Google Scholar 

  • Harris, L.R., 1973. The Bandwith Heuristic Search. Proc. 3rd Int. Joint Conf. on Artificial Intelligence, p.23–29.

  • Hart, P.E., Nilsson, N., Raphael, B., 1968. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern., 4(2):100–107. [doi:10.1109/ TSSC.1968.300136]

    Article  Google Scholar 

  • Kerschner, M., 2001. Seam-line detection in colour orthophoto mosaicking by use of twin snakes. ISPRS J. Photogr. Remote Sens., 56(1):53–64. [doi:10.1016/S0924-2716(01)00033-8]

    Article  Google Scholar 

  • Koll, A., Kaindl, H., 1992. A New Approach to Dynamic Weighting. Proc. 10th European Conf. on Artificial Intelligence, p.16–17.

  • Korf, R.E., 1988. Optimal Path-Finding Algorithms. In: Kanal, L., Kumar, D. (Eds.), Search in Artificial Intelligence. Springer-Verlag, p.223–267.

  • Kraus, K., Pfeifer, N., 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogr. Remote Sens., 53(4):193–203. [doi:10.1016/S0924-2716(98)00009-4]

    Article  Google Scholar 

  • Kraus, K., Pfeifer, N., 2001. Advanced DTM generation from LiDAR data. Int. Arch. Photogr. Remote Sens. Spat. Inform. Sci., 34(3/W4):23–30.

    Google Scholar 

  • Lester, P., 2005. A* Path Finding for Beginners. Available from http://www.policyalmanac.org/games/aStarTutorial.htm [Accessed on Sept., 2010].

  • Mahanti, A., Ray, K., 1988. Network Search Algorithms with Modifiable Heuristics. In: Kanal, L., Kumar, D. (Eds.), Search in Artificial Intelligence. Springer-Verlag, p.200–222.

  • Martelli, A., 1977. On the complexity of admissible search algorithms. Artif. Intell., 8(1):1–13. [doi:10.1016/0004-3702(77)90002-9]

    Article  MathSciNet  MATH  Google Scholar 

  • Mero, L., 1984. A heuristic search algorithm with modifiable estimate. Artif. Intell., 23(1):13–27. [doi:10.1016/0004-3702(84)90003-1]

    Article  MathSciNet  MATH  Google Scholar 

  • Pearl, J., 1984. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

    Google Scholar 

  • Pearl, J., Kim, J.H., 1982. Studies in semi-admissible heuristics. IEEE Trans. PAMI, 4(4):392–400.

    MATH  Google Scholar 

  • Pohl, I., 1973. The Avoidance of (Relative) Catastrophe, Heuristic Competence, Genuine Dynamic Weighting and Computational Issues in Heuristic Problem Solving. Proc. 3rd Int. Joint Conf. on Artificial Intelligence, p.12–17.

  • Priestnall, G., Jaafar, J., Duncan, A., 2000. Extracting urban features from LiDAR digital surface models. Comput. Envir. Urban Syst., 24(2):65–78. [doi:10.1016/S0198-9715(99)00047-2]

    Article  Google Scholar 

  • Schickler, W., Thorpe, A., 1998. Operational Procedure for Automatic True Orthophoto Generation. Int. Archives of Photogrammetry and Remote Sensing, p.527–532.

  • Shiren, Y., Li, L., Peng, G., 1989. Two-dimensional seam-point searching in digital image mosaicking. Photogr. Eng. Remote Sens., 55(1):49–53.

    Google Scholar 

  • Sithole, G., Vosselman, G., 2003. Automatic Structure Detection in a Point-Cloud of an Urban Landscape. Proc. 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, p.67–71. [doi:10.1109/DFUA.2003.1219959]

  • Sithole, G., Vosselman, G., 2004. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J. Photogr. Remote Sens., 59(1–2):85–101. [doi:10.1016/j.isprsjprs.2004.05.004]

    Article  Google Scholar 

  • Zhang, K., Whitman, D., 2005. Comparison of three algorithms for filtering airborne LiDAR data. Photogr. Eng. Remote Sens., 71(3):313–324.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-chao Ma.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2009CB724007) and the National High-Tech R & D Program (863) of China (No. 2006AA12Z101)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Hc., Sun, J. Intelligent optimization of seam-line finding for orthophoto mosaicking with LiDAR point clouds. J. Zhejiang Univ. - Sci. C 12, 417–429 (2011). https://doi.org/10.1631/jzus.C1000235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1000235

Key words

CLC number

Navigation