Skip to main content
Log in

Solving infinite horizon nonlinear optimal control problems using an extended modal series method

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

This paper presents a new approach for solving a class of infinite horizon nonlinear optimal control problems (OCPs). In this approach, a nonlinear two-point boundary value problem (TPBVP), derived from Pontryagin’s maximum principle, is transformed into a sequence of linear time-invariant TPBVPs. Solving the latter problems in a recursive manner provides the optimal control law and the optimal trajectory in the form of uniformly convergent series. Hence, to obtain the optimal solution, only the techniques for solving linear ordinary differential equations are employed. An efficient algorithm is also presented, which has low computational complexity and a fast convergence rate. Just a few iterations are required to find an accurate enough suboptimal trajectory-control pair for the nonlinear OCP. The results not only demonstrate the efficiency, simplicity, and high accuracy of the suggested approach, but also indicate its effectiveness in practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Khalaf, M., Huang, J., Lewis, F.L., 2006. Nonlinear H 2/H Constrained Feedback Control: a Practical Design Approach Using Neural Networks. Springer-Verlag, New York.

    Google Scholar 

  • Adomian, G., Adomian, G.E., 1984. A global method for solution of complex systems. Math. Model., 5(4):251–263. [doi:10.1016/0270-0255(84)90004-6]

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold, V.I., 1992. Ordinary Differential Equations. Springer-Verlag, New York.

    Google Scholar 

  • Ascher, U.M., Mattheij, R.M.M., Russel, R.D., 1995. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Banks, S.P., Dinesh, K., 2000. Approximate optimal control and stability of nonlinear finite- and infinite-dimensional systems. Ann. Oper. Res., 98(1/4):19–44. [doi:10.1023/A:1019279617898]

    Article  MathSciNet  MATH  Google Scholar 

  • Bazaraa, M.S., Sherali, H.D., Shetty, C.M., 2006. Nonlinear Programming Theory and Algorithms (3rd Ed.). John Wiley & Sons, New York. [doi:10.1002/0471787779]

    Book  MATH  Google Scholar 

  • Beard, R.W., Saridis, G.N., Wen, J.T., 1997. Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica, 33(12):2159–2177. [doi:10.1016/S0005-1098(97)00128-3]

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman, R., 1952. On the theory of dynamic programming. PNAS, 38(8):716–719. [doi:10.1073/pnas.38.8.716]

    Article  MATH  Google Scholar 

  • Bryson, A.E., 2002. Applied Linear Optimal Control: Examples and Algorithms. Cambridge University Press, UK.

    Google Scholar 

  • Cimen, T., 2008. State-Dependent Riccati Equation (SDRE) Control: a Survey. 17th IFAC World Congress. [doi:10.3182/20080706-5-KR-1001.00635]

  • Garrard, W.L., Jordan, J.M., 1977. Design of nonlinear automatic flight control systems. Automatica, 13(5):497–505. [doi:10.1016/0005-1098(77)90070-X]

    Article  MATH  Google Scholar 

  • Huang, J., Lin, C.F., 1995. Numerical approach to computing nonlinear H-infinity control laws. J. Guid. Control Dyn., 18(5):989–994. [doi:10.2514/3.21495]

    Article  MATH  Google Scholar 

  • Hwang, I., Li, J., Du, D., 2009. Differential transformation and its application to nonlinear optimal control. J. Dyn. Syst. Meas. Control, 131(5):051010–11. [doi:10.1115/1.3155013]

    Article  Google Scholar 

  • Junkins, J.L., Turner, J.D., 1986. Optimal Spacecraft Rotational Maneuvers. Elsevier, Amsterdam.

    Google Scholar 

  • Khatibi, M., Shanechi, H.M., 2011. Using modal series to analyze the transient response of oscillators. Int. J. Circ. Theor. Appl., 39(2):127–134. [doi:10.1002/cta.621]

    Article  MATH  Google Scholar 

  • Lyapunov, A.M., 1892. General Problem on Stability of Motion. Fuller, A.T., translator, 1992. Taylor & Francis, London (in Russian).

    Google Scholar 

  • Manousiouthakis, V., Chmielewski, D.J., 2002. On constrained infinite-time nonlinear optimal control. Chem. Eng. Sci., 57(1):105–114. [doi:10.1016/S0009-2509(01)00359-1]

    Article  Google Scholar 

  • McCaffrey, D., Banks, S.P., 2005. Geometric existence theory for the control-affine nonlinear optimal regulator. J. Math. Anal. Appl., 305(1):380–390. [doi:10.1016/j.jmaa.2004.12.017]

    Article  MathSciNet  MATH  Google Scholar 

  • Murdock, J.A., 1999. Perturbations: Theory and Methods. Classics in Applied Mathematics. SIAM, Philadelphia.

    Google Scholar 

  • Notsu, T., Konishi, M., Imai, J., 2008. Optimal water cooling control for plate rolling. Int. J. Innov. Comput. Inform. Control, 4(12):3169–3181.

    Google Scholar 

  • Pariz, N., 2001. Analysis of Nonlinear System Behavior: the Case of Stressed Power Systems. PhD Thesis, Department of Electrical Engineering, Ferdowsi University of Mashhad, Iran.

    Google Scholar 

  • Pariz, N., Shanechi, H.M., Vaahedi, E., 2003. Explaining and validating stressed power systems behavior using modal series. IEEE Trans. Power Syst., 18(2):778–785. [doi:10. 1109/TPWRS.2003.811307]

    Article  Google Scholar 

  • Pontryagin, L.S., 1959. Optimal control processes. Usp. Mat. Nauk, 14:3–20 (in Russian).

    MathSciNet  Google Scholar 

  • Shanechi, H.M., Pariz, N., Vahedi, E., 2003. General nonlinear modal representation of large scale power systems. IEEE Trans. Power Syst., 18(3):1103–1109. [doi:10.1109/TPWRS.2003.814883]

    Article  Google Scholar 

  • Tang, G.Y., 2005. Suboptimal control for nonlinear systems: a successive approximation approach. Syst. Control Lett., 54(5):429–434. [doi:10.1016/j.sysconle.2004.09.012]

    Article  MATH  Google Scholar 

  • Tang, G.Y., Qu, H.P., Gao, Y.M., 2002. Sensitivity approach of suboptimal control for a class of nonlinear systems. J. Ocean Univ. Qingdao, 32(4):615–620 (in Chinese).

    Google Scholar 

  • Tang, L., Zhao, L.D., Guo, J., 2009. Research on pricing policies for seasonal goods based on optimal control theory. ICIC Expr. Lett., 3(4B):1333–1338.

    Google Scholar 

  • Wu, F.X., Wu, H., Han, Z.X., Gan, D.Q., 2007. Validation of power system non-linear modal analysis methods. Electr. Power Syst. Res., 77(10):1418–1424. [doi:10.1016/j.epsr.2006.10.016]

    Article  Google Scholar 

  • Yousefi, S.A., Dehghan, M., Lotfi, A., 2010. Finding the optimal control of linear systems via He’s variational iteration method. Int. J. Comput. Math., 87(5):1042–1050. [doi:10.1080/00207160903019480]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Jajarmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jajarmi, A., Pariz, N., Effati, S. et al. Solving infinite horizon nonlinear optimal control problems using an extended modal series method. J. Zhejiang Univ. - Sci. C 12, 667–677 (2011). https://doi.org/10.1631/jzus.C1000325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1000325

Key words

CLC number

Navigation