Skip to main content
Log in

Robust optical flow estimation based on brightness correction fields

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Optical flow estimation is still an important task in computer vision with many interesting applications. However, the results obtained by most of the optical flow techniques are affected by motion discontinuities or illumination changes. In this paper, we introduce a brightness correction field combined with a gradient constancy constraint to reduce the sensibility to brightness changes between images to be estimated. The advantage of this brightness correction field is its simplicity in terms of computational complexity and implementation. By analyzing the deficiencies of the traditional total variation regularization term in weakly textured areas, we also adopt a structure-adaptive regularization based on the robust Huber norm to preserve motion discontinuities. Finally, the proposed energy functional is minimized by solving its corresponding Euler-Lagrange equation in a more effective multi-resolution scheme, which integrates the twice downsampling strategy with a support-weight median filter. Numerous experiments show that our method is more effective and produces more accurate results for optical flow estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, S., Roth, S., Scharstein, D., Black, M., Lewis, J., Szeliski, R., 2007. A Database and Evaluation Methodology for Optical Flow. IEEE 11th Int. Conf. on Computer Vision, p.1–8. [doi:10.1109/ICCV.2007.4408903]

  • Barron, J., Fleet, D., Beauchemin, S., 1994. Performance of optical flow techniques. Int. J. Comput. Vis., 12(1): 43–77. [doi:10.1007/BF01420984]

    Article  Google Scholar 

  • Black, M.J., Anandan, P., 1996. The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Understand., 63(1):75–104. [doi:10.1006/cviu.1996.0006]

    Article  Google Scholar 

  • Brox, T., Malik, J., 2011. Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell., 33(3):500–513. [doi:10.1109/TPAMI.2010.143]

    Article  MATH  Google Scholar 

  • Brox, T., Bruhn, A., Papenberg, N., Weickert, J., 2004. High Accuracy Optical Flow Estimation Based on a Theory for Warping. European Conf. on Computer Vision, p.25–36.

  • Bruhn, A., Weickert, J., Schnörr, C., 2005. Lucas/Kanade meets Horn/Schunk: combining local and global optical flow methods. Int. J. Comput. Vis., 61(3):211–231. [doi:10.1023/B:VISI.0000045324.43199.43]

    Article  Google Scholar 

  • Cassisa, C., Simoens, S., Prinet, V., 2009. Two-frame optical flow formulation in an unwarped multiresolution scheme. LNCS, 5856:790–797. [doi:10.1007/978-3-642-10268-4_93]

    Google Scholar 

  • Dessauer, M.P., Dua, S., 2010. Optical flow object detection, motion estimation, and tracking on moving vehicles using wavelet decompositions. SPIE, 7694:76941J. [doi:10.1117/12.853281]

    Article  Google Scholar 

  • Efros, A., Berg, A., Mori, G., Malik, J., 2003. Recognizing Action at a Distance. Proc. 9th IEEE Int. Conf. on Computer Vision, p.726–733. [doi:10.1109/ICCV.2003.1238420]

  • Fakih, A., Zelek, J., 2008. Structure from Motion: Combining Features Correspondences and Optical Flow. 19th Int. Conf. on Pattern Recognition, p.1–4. [doi:10.1109/ICPR.2008.4761007]

  • Gennert, M.A., Negahdaripour, S., 1987. Relaxing the Brightness Constancy Assumption in Computing Optical Flow. Technical Report, Massachusetts Institute of Technology, Cambridge, MA, USA.

    Google Scholar 

  • Gilland, D.R., Mair, B.A., Parker, J.G., 2008. Motion estimation for cardiac emission tomography by optical flow methods. Phys. Med. Biol., 53(11):2991–3006. [doi:10.1088/0031-9155/53/11/016]

    Article  Google Scholar 

  • Gray, R.M., 2006. Toeplitz and circulant matrices: a review foundations and trends. Commun. Inform. Theory, 2(3):155–239. [doi:10.1561/0100000006]

    Article  Google Scholar 

  • Haussecker, H.W., Fleet, D.J., 2001. Computing optical flow with physical models of brightness variation. IEEE Trans. Pattern Anal. Mach. Intell., 23(6):661–673. [doi:10.1109/34.927465]

    Article  Google Scholar 

  • Horn, B., Schunck, B., 1981. Determining optical flow. Artif. Intell., 17(1–3):185–203. [doi:10.1016/0004-3702(81)90024-2]

    Article  Google Scholar 

  • Hsiao, I., Rangarajan, A., Gindi, G., 2003. A new convex edge-preserving median prior with applications to tomography. IEEE Trans. Med. Imag., 22(5):580–585. [doi:10.1109/TMI.2003.812249]

    Article  Google Scholar 

  • Huber, P.J., 1973. Robust regression: asymptotics, conjectures and Monte Carlo. Ann. Stat., 1(5):799–821. [doi:10.1214/aos/1176342503]

    Article  MATH  Google Scholar 

  • Kim, Y.H., Martinez, A.M., Kak, C.A., 2005. Robust motion estimation under varying illumination. Image Vis. Comput., 23(4):365–375. [doi:10.1016/j.imavis.2004.05.010]

    Article  Google Scholar 

  • Lempitsky, V., Roth, S., Rother, C., 2008. FusionFlow: Discrete Continuous Optimization for Optical Flow Estimation. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–8. [doi:10.1109/CVPR.2008.4587751]

  • Li, Y., Osher, S., 2009. A new median formula with applications to PDE based denoising. Commun. Math. Sci., 7(3):741–753.

    MATH  MathSciNet  Google Scholar 

  • Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T., 2008. SIFT flow: dense correspondence across different scenes. LNCS, 5304:28–42. [doi:10.1007/978-3-540-88690-7_3]

    Google Scholar 

  • Myronenko, A., Song, X., 2009. Image Registration by Minimization of Residual Complexity. IEEE Conf. on Computer Vision and Pattern Recognition, p.49–56. [doi:10.1109/CVPR.2009.5206571]

  • Negahdaripour, S., 1998. Revised definition of optical flow: integration of radiometric and geometric cues for dynamic scene analysis. IEEE Trans. Pattern Anal. Mach. Intell., 20(9):961–979. [doi:10.1109/34.713362]

    Article  Google Scholar 

  • Sand, P., Teller, S., 2008. Particle video: long-range motion estimation using point trajectories. Int. J. Comput. Vis., 80(1):72–91. [doi:10.1007/s11263-008-0136-6]

    Article  Google Scholar 

  • Shulman, D., Herve, J.Y., 1989. Regularization of Discontinuous Flow Fields. Proc. Workshop on Visual Motion, p.81–86. [doi:10.1109/WVM.1989.47097]

  • Steinbrücker, F., Pock., T., 2009. Large Displacement Optical Flow Computation without Warping. Int. Conf. on Computer Vision, p.1609–1614.

  • Strang, G., 1999. The discrete cosine transform. SIAM Rev., 41(1):135–147. [doi:10.1137/S0036144598336745]

    Article  MathSciNet  Google Scholar 

  • Sun, D., Roth, S., Black, M.J., 2010. Secrets of Optical Flow Estimation and Their Principles. IEEE Conf. on Computer Vision and Pattern Recognition, pp.2432–2439. [doi:10.1109/CVPR.2010.5539939]

  • Teng, C.H., Lai, S.H., Chen, Y.S., Hsu, W.H., 2005. Accurate optical flow computation under non-uniform brightness variations. Comput. Vis. Image Understand., 97(3):315–346. [doi:10.1016/j.cviu.2004.08.002]

    Article  Google Scholar 

  • Wang, M.Y., Hu, H.B., Qin, B.J., 2007. Robust Deformable Medical Image Registration Using Optical Flow and Multilevel Free Form Deformation. Nuclear Science Symp. Conf. Record, p.4552–4555.

  • Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D., 2009a. An improved algorithm for TV-L 1 optical flow. LNCS, 5604:23–45. [doi:10.1007/978-3-642-03061-1_2]

    Google Scholar 

  • Wedel, A., Cremers, D., Pock, T., Bischof, H., 2009b. Structure- and Motion-Adaptive Regularization for High Accuracy Optic Flow. IEEE 12th Int. Conf. on Computer Vision, p.1663–1668. [doi:10.1109/ICCV.2009.5459375]

  • Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H., 2009. Anisotropic Huber-L 1 Optical Flow. British Machine Vision Conf., p.1–11.

  • Yoon, K.J., Kweon, I.S., 2006. Adaptive supportweight approach for correspondence search. IEEE Trans. Pattern Anal. Mach. Intell., 28(4):650–656. [doi:10.1109/TPAMI.2006.70]

    Article  Google Scholar 

  • Zach, C., Pock, T., Bischof, H., 2007. A duality based approach for realtime TV-L 1 optical flow. LNCS, 4713:214–223. [doi:10.1007/978-3-540-74936-3_22]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Project supported by the National Natural Science Foundation of China (No. U0935004) and an IDeA Network of Biomedical Research Excellence (INBRE) grant from the National Institutes of Health (NIH) (No. 5P20RR01647206)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Su, Zx., Pan, Js. et al. Robust optical flow estimation based on brightness correction fields. J. Zhejiang Univ. - Sci. C 12, 1010–1020 (2011). https://doi.org/10.1631/jzus.C1100062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1100062

Key words

CLC number

Navigation