Skip to main content
Log in

Brain tissue segmentation based on spatial information fusion by Dempster-Shafer theory

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

As a result of noise and intensity non-uniformity, automatic segmentation of brain tissue in magnetic resonance imaging (MRI) is a challenging task. In this study a novel brain MRI segmentation approach is presented which employs Dempster-Shafer theory (DST) to perform information fusion. In the proposed method, fuzzy c-mean (FCM) is applied to separate features and then the outputs of FCM are interpreted as basic belief structures. The salient aspect of this paper is the interpretation of each FCM output as a belief structure with particular focal elements. The results of the proposed method are evaluated using Dice similarity and Accuracy indices. Qualitative and quantitative comparisons show that our method performs better and is more robust than the existing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-Almageed, W., El-Osery, A., Smith, C., 2004. A fuzzy-statistical contour model for MRI segmentation and target tracking. SPIE, 5438:25–33. [doi:10.1117/12.541406]

    Article  Google Scholar 

  • Afzalian, A., Karami Mollaei, M.R., Dousti, M., Ghasemi, J., 2010. A new approach for speech enhancement based on singular value decomposition and wavelet transform. Aust. J. Basic Appl. Sci., 4(8):3602–3612.

    Google Scholar 

  • Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T., 2002. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imag., 21(3):193–199. [doi:10.1109/42.996338]

    Article  Google Scholar 

  • Awate, S.P., Zhang, H., Simon, T.J., Gee, J.C., 2008. Multivariate Segmentation of Brain Tissues by Fusion of MRI and DTI Data. Proc. 5th IEEE Int. Symp. on Biomedical Imaging: from Nano to Macro, p.213–216. [doi:10.1109/ISBI.2008.4540970]

  • Beynon, M., Cosker, D., Marshall, D., 2001. An expert system for multi-criteria decision making using Dempster Shafer theory. Expert Syst. Appl., 20(4):357–367. [doi:10.1016/S0957-4174(01)00020-3]

    Article  Google Scholar 

  • Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York. [doi:10.1007/978-1-4757-0450-1]

    Book  MATH  Google Scholar 

  • Binaghi, E., Madella, P., 1999. Fuzzy Dempster-Shafer reasoning for rule-based classifiers. Int. J. Intell. Syst., 14(6):559–583. [doi:10.1002/(SICI)1098-111X(199906)14:6〈559::AID-INT2〉3.0.CO;2-#]

    Article  MATH  Google Scholar 

  • Bloch, I., 1996. Some aspects of Dempster-Shafer evidence theory for classification of multi-modality medical images taking partial volume effect into account. Pattern Recogn. Lett., 17(8):905–919. [doi:10.1016/0167-8655(96)00039-6]

    Article  Google Scholar 

  • Bomans, M., Hohne, K.H., Tiede, U., Riemer, M., 1990. 3-D segmentation of MR images of the head for 3-D display. IEEE Trans. Med. Imag., 9(2):177–183. [doi:10.1109/42.56342]

    Article  Google Scholar 

  • Brandt, M.E., Bohan, T.P., Kramer, L.A., Fletcher, J.M., 1994. Estimation of CSF, white and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. Comput. Med. Imag. Graph., 18(1):25–34. [doi:10.1016/0895-6111(94)90058-2]

    Article  Google Scholar 

  • Brechbühler, C., Gerig, G., Székely, G., 1996. Compensation of Spatial Inhomogeneity in MRI Based on a Multi-valued Image Model and a Parametric Bias Estimate. Proc. Visualization in Biomedical Computing, p.141–146. [doi:10.1007/BFb0046948]

  • Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J., 2006. Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imag. Graph., 30(1): 9–15. [doi:10.1016/j.compmedimag.2005.10.001]

    Article  Google Scholar 

  • Demirhan, A., Güler, I., 2011. Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation. Eng. Appl. Artif. Intell., 24(2):358–367. [doi:10.1016/j.engappai.2010.09.008]

    Article  Google Scholar 

  • Ghasemi, J., Karami Mollaei, M.R., 2009. A new approach for speech enhancement based on eigenvalue spectral subtraction. Signal Process. Int. J., 3(4):34–41.

    Google Scholar 

  • Ghasemi, J., Karami Mollaei, M.R., Ghaderi, R., Hojjatoleslami, S.A., 2011. Brain Tissue Segmentation by FCM and Dempster-Shafer Theory. 7th Iranian Conf. on Machine Vision and Image Processing, p.1–5. [doi:10.1109/IranianMVIP.2011.6121577]

  • Gispert, J.D., Reig, S., Pascau, J., Vaquero, J.J., Garcia-Barreno, P., Desco, M., 2004. Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error. Human Brain Map., 22(2):133–144. [doi:10.1002/hbm.20013]

    Article  Google Scholar 

  • Hadjiprocopis, A., Rashid, W., Tofts, P.S., 2005. Unbiased segmentation of diffusion-weighted magnetic resonance images of the brain using iterative clustering. Magn. Reson. Imag., 23(8):877–885. [doi:10.1016/j.mri.2005.07.010]

    Article  Google Scholar 

  • Hasanzadeh, M., Kasaei, S., 2007. Multispectral Brain MRI Segmentation Based on Fuzzy Classifiers and Evidence Theory. 15th Iranian Conf. on Electrical Engineering, p.1–5.

  • Heinonen, T., Dastidar, P., Eskola, H., Frey, H., Ryymin, P., Laasonen, E., 1998. Applicability of semi-automatic segmentation for volumetric analysis of brain lesions. J. Med. Eng. Technol., 22(4):173–178. [doi:10.3109/03091909809032536]

    Article  Google Scholar 

  • Ji, L., Yan, H., 2002. An attractable snakes based on the greedy algorithm for contour extraction. Pattern Recogn., 35(4):791–806. [doi:10.1016/S0031-3203(01)00085-1]

    Article  MATH  Google Scholar 

  • Ji, Z.X., Sun, Q.S., Xia, D.S., 2011. A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image. Comput. Med. Imag. Graph., 35(5):383–397. [doi:10.1016/j.compmedimag.2010.12.001]

    Article  Google Scholar 

  • Liew, A.W., Yan, H., 2003. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Trans. Med. Imag., 22(9):1063–1075. [doi:10.1109/TMI.2003.816956]

    Article  Google Scholar 

  • Liew, A.W., Yan, H., 2006. Current methods in the automatic tissue segmentation of 3D magnetic resonance brain images. Curr. Med. Imag. Rev., 2(1):91–103. [doi:10.2174/157340506775541604]

    Article  Google Scholar 

  • Lin, T.C., 2010. Switching-based filter based on Dempster’s combination rule for image processing. Inf. Sci., 180(24): 4892–4908. [doi:10.1016/j.ins.2010.08.011]

    Article  Google Scholar 

  • McInerney, T., Terzopoulos, D., 1996. Deformable models in medical image analysis: a survey. Med. Image Anal., 1(2):91–108. [doi:10.1016/S1361-8415(96)80007-7]

    Article  Google Scholar 

  • Niessen, W.J., Vincken, K.L., Weickert, J., Romeny, M.T.H., Viergever, M.A., 1999. Multiscale segmentation of three-dimensional MR brain images. Int. J. Comput. Vis., 31(2/3):185–202. [doi:10.1023/A:1008070000018]

    Article  Google Scholar 

  • Pham, D.L., Prince, J.L., 1999a. An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recogn. Lett., 20(1): 57–68. [doi:10.1016/S0167-8655(98)00121-4]

    Article  MATH  Google Scholar 

  • Pham, D.L., Prince, J.L., 1999b. Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imag., 18(9):737–752. [doi:10.1109/42.802752]

    Article  Google Scholar 

  • Pham, D.L., Xu, C., Prince, J.L., 2000. A survey of current methods in medical image segmentation. Ann. Rev. Biomed. Eng., 2(1):315–337. [doi:10.1146/annurev.bioeng.2.1.315]

    Article  Google Scholar 

  • Prima, S., Ayache, N., Barrick, T., Roberts, N., 2001. Maximum Likelihood Estimation of the Bias Field in MR Brain Images: Investigating Different Modelings of the Imaging Process. Proc. 4th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, p.811–819.

  • Rakar, A., Juricic, D., Ballé, P., 1999. Transferable belief model in fault diagnosis. Eng. Appl. Artif. Intell., 12(5):555–567. [doi:10.1016/S0952-1976(99)00030-5]

    Article  Google Scholar 

  • Scherrer, B., Forbes, F., Garbay, C., Dojat, M., 2010. A joint Bayesian framework for MR brain scan tissue and structure segmentation based on distributed Markovian agents. Comput. Intell. Healthcare 4, 309:81–101. [doi:10.1007/978-3-642-14464-6_5]

    Article  Google Scholar 

  • Shafer, G., 1976. A Mathematical Theory of Evidence. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Shen, S., Sandham, W., Granat, M., Sterr, A., 2005. MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans. Inf. Technol. Biomed., 9(3):459–467. [doi:10.1109/TITB.2005.847500]

    Article  Google Scholar 

  • Simmons, A., Tofts, P.S., Barker, G.J., Arridge, S.R., 1994. Sources of intensity nonuniformity in spin echo images at 1.5 T. Magn. Reson. Med., 32(1):121–128. [doi:10.1002/mrm.1910320117]

    Article  Google Scholar 

  • Siyal, M.Y., Yu, L., 2005. An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI. Pattern Recogn. Lett., 26(13):2052–2062. [doi:10.1016/j.patrec.2005.03.019]

    Article  Google Scholar 

  • Sled, J.G., Zijdenbos, A.P., Evans, A.C., 1998. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imag., 17(1):87–97. [doi:10.1109/42.668698]

    Article  Google Scholar 

  • Styner, M., Brechbuhler, C., Szekely, G., Gerig, G., 2000. Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans. Med. Imag., 19(3):153–165. [doi:10.1109/42.845174]

    Article  Google Scholar 

  • Tabassian, M., Ghaderi, R., Ebrahimpour, R., 2011. Knitted fabric defect classification for uncertain labels based on Dempster-Shafer theory of evidence. Expert Syst. Appl., 38(5):5259–5267. [doi:10.1016/j.eswa.2010.10.032]

    Article  Google Scholar 

  • Tabassian, M., Ghaderi, R., Ebrahimpour, R., 2012. Combination of multiple diverse classifiers using belief functions for handling data with imperfect labels. Expert Syst. Appl., 39(2):1698–1707. [doi:10.1016/j.eswa.2011.06.061]

    Article  Google Scholar 

  • Tsang, O., Gholipour, A., Kehtarnavaz, N., Panahi, I., Gopinath, K., Briggs, R., 2008. Comparison of Tissue Segmentation Algorithms in Neuroimage Analysis Software Tools. Proc. 30th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, p.3924–3928. [doi:10.1109/IEMBS.2008.4650068]

  • Valente, F., 2010. Multi-stream speech recognition based on Dempster-Shafer combination rule. Speech Commun., 52(3):213–222. [doi:10.1016/j.specom.2009.10.002]

    Article  MathSciNet  Google Scholar 

  • Wang, J., Kong, J., Lu, Y., Qi, M., Zhang, B., 2008. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints. Comput. Med. Imag. Graph., 32(8):685–698. [doi:10.1016/j.compmedimag.2008.08.004]

    Article  Google Scholar 

  • Yager, R.R., Kacprzyk, J., Fedrizzi, M., 1994. Advances in the Dempster-Shafer Theory of Evidence. Wiley, Chichester.

    MATH  Google Scholar 

  • Yoon, O.K., Kwak, D.M., Kim, D.W., Park, K.H., 1999. MR Brain Image Segmentation Using Fuzzy Clustering. Proc. IEEE Int. Fuzzy Systems Conf., 2:853–857. [doi:10.1109/FUZZY.1999.793060]

    Google Scholar 

  • Zhang, D.Q., Chen, S.C., 2004. A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif. Intell. Med., 32(1):37–50. [doi:10.1016/j.artmed.2004.01.012]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghasemi, J., Karami Mollaei, M.R., Ghaderi, R. et al. Brain tissue segmentation based on spatial information fusion by Dempster-Shafer theory. J. Zhejiang Univ. - Sci. C 13, 520–533 (2012). https://doi.org/10.1631/jzus.C1100288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1100288

Key words

CLC number

Navigation