Skip to main content
Log in

Turning mechanism and composite control of stratospheric airships

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

The parametric model of stratospheric airships is established in the body axes coordinate system. In this paper we study the turning mechanism of stratospheric airships including the generated forces and the key parameters for steady turning. We compare and analyze the different driven-characteristics between aerodynamic control surfaces and vectored thrust in turning. We design a composite control combining aerodynamic control surfaces and vectored thrust according to different dynamic pressure conditions, to achieve coordinated turning under high or low airspeed situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azinheira, J.R., de Paiva, E.C., Bueno, S.S., 2002. Influence of wind speed on airship dynamics. J. Guid. Control Dynam., 25(6):1116–1124. [doi:10.2514/2.4991]

    Article  Google Scholar 

  • Ben-Asher, J.Z., 1995. Optimal trajectories for an unmanned air-vehicle in the horizontal plane. J. Aircraft, 32(3):677–680. [doi:10.2514/3.46773]

    Article  MathSciNet  Google Scholar 

  • Danowsky, B.P., Myers, T.T., 2008. Considerations in the Lateral Stability Characteristics of Airship Dynamics. AIAA Atmospheric Flight Mechanics Conf. and Exhibit.

  • Gomes, S.B.V., 1990. An Investigation of the Flight Dynamics of Airships with Application to the YEZ-2A. PhD Thesis, College of Aeronautics, Cranfield University, UK.

    Google Scholar 

  • Heymann, V.I., Ben-Asher, J.Z., 1997. Aircraft trajectory optimization in the horizontal plane. J. Guid. Control Dynam., 20(6):1271–1274. [doi:10.2514/2.7602]

    Article  MATH  Google Scholar 

  • Hima, S., Bestaoui, Y., 2006. Trim Trajectories Characterization for an Unmanned Autonomous Airship. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.137–142. [doi:10.1109/IROS.2006.281930]

  • Khoury, G.A., Gillett, J.D., 2000. Airship Technology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Kulczycki, E.A., Johnson, J.R., Bayard, D.S., Elfe, A., Quadrell, M.B., 2008. On the Development of Parameterized Linear Analytical Longitudinal Airship Models. AIAA Guidance, Navigation and Control Conf. and Exhibit, p.769–774.

  • Lee, S., Bang, H., 2007. Three-dimensional ascent trajectory optimization for stratospheric airship platforms in the jet stream. J. Guid. Control Dynam., 30(5):1341–1351. [doi: 10.2514/1.27344]

    Article  Google Scholar 

  • Li, Y., 2008. Dynamics Modeling and Simulation of Flexible Airships. PhD Thesis, McGill University, Montreal, Canada.

    Google Scholar 

  • Li, Y., Nabon, M., 2007. Modeling and simulation of airship dynamics. J. Guid. Control Dynam., 30(6):1691–1700. [doi:10.2514/1.29061]

    Article  Google Scholar 

  • Li, Y., Nahon, M., Sharf, I., 2009. Dynamics modelling and simulation of flexible airships. AIAA J., 47(3):592–605. [doi:10.2514/1.37455]

    Article  Google Scholar 

  • Masahiko, O., Masaaki, S., 2006. Vehicle Proposal to Next Japanese Stratospheric LTA Developments. 6th AIAA Aviation Technology, Integration and Operations Conf.

  • Miller, C.J., Sulliva, J., 2007. High Altitude Airship Simulation Control and Low Altitude Flight Demonstration. AIAA Infotech@Aerospace Conf. and Exhibit.

  • Mueller, J.B., Zhao, Y., Garrard, W., 2009. Optimal ascent trajectories for stratospheric airships using wind energy. J. Guid. Control Dynam., 32(4):1232–1245. [doi:10.2514/1.41270]

    Article  Google Scholar 

  • Nagabhushan, B.L., Pasha, R.P.K., 1992. Analysis of airship lateral maneuverability. J. Aircraft, 29(3):299–300. [doi: 10.2514/3.46160]

    Article  Google Scholar 

  • Nippress, K.R., Gomes, S.B.V., 1989. Estimation of the Flight Dynamic Characteristics of the YEZ-2A. 8th Lighter-Than-Air Systems Technology Conf.

  • Peddiraju, P., Liesky, T., Nahon, M., 2009. Dynamics Modeling for an Unmanned, Unstable, Fin-Less Airship. 18th AIAA Lighter-Than-Air Systems Technology Conf.

  • Shiau, J.K., Ma, D.M., Shie, J.R., Chiu, C.W., 2010. Optimal sizing and cruise speed determination for a solar-powered airplane. J. Aircraft, 47(2):622–629. [doi:10.2514/1.45908]

    Article  Google Scholar 

  • Walden, R., 1994. Time-optimal turn to a heading: an analytic solution. J. Guid. Control Dynam., 17(4):873–875. [doi: 10.2514/3.21282]

    Article  MATH  Google Scholar 

  • Yang, G., Kapila, V., 2002. Optimal Path Planning for Unmanned Air Vehicles with Kinematic and Tactical Constraints. Proc. 41st IEEE Conf. on Decision and Control, p.1301–1306. [doi:10.1109/CDC.2002.1184695]

  • Zhang, K.S., Han, Z.H., Song, B.F., 2010. Flight performance analysis of hybrid airship: revised analytical formulation. J. Aircraft, 47(4):1318–1330. [doi:10.2514/1.47294]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Chen.

Additional information

Project (No. 61175074) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Mh., Duan, Dp. & Chen, L. Turning mechanism and composite control of stratospheric airships. J. Zhejiang Univ. - Sci. C 13, 859–865 (2012). https://doi.org/10.1631/jzus.C1200084

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1200084

Key words

CLC number

Navigation