Skip to main content
Log in

An independent but not identically distributed bit error model for heavy-tailed wireless channels

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

The error patterns of a wireless channel can be represented by a binary sequence of ones (burst) and zeros (run), which is referred to as a trace. Recent surveys have shown that the run length distribution of a wireless channel is an intrinsically heavy-tailed distribution. Analytical models to characterize such features have to deal with the trade-off between complexity and accuracy. In this paper, we use an independent but not identically distributed (inid) stochastic process to characterize such channel behavior and show how to parameterize the inid bit error model on the basis of a trace. The proposed model has merely two parameters both having intuitive meanings and can be easily figured out from a trace. Compared with chaotic maps, the inid bit error model is simple for practical use but can still be deprived from heavy-tailed distribution in theory. Simulation results demonstrate that the inid model can match the trace, but with fewer parameters. We then propose an improvement on the inid model to capture the ‘bursty’ nature of channel errors, described by burst length distribution. Our theoretical analysis is supported by an experimental evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Fernandes, V.S., Pinto, E.L., Grivet, M., 2010. A Novel Structured Markovian Model for Burst-Error Channels. Int. Conf. on Wireless and Mobile Communications, p.11–15. [doi:10.1109/ICWMC.2010.13]

  • Fritchman, B.D., 1967. A binary channel characterization using partitioned Markov chains. IEEE Trans. Inf. Theory, 13(2):221–227. [doi:10.1109/TIT.1967.1053975]

    Article  MATH  Google Scholar 

  • Garcia-Frias, J., Crespo, P.M., 1997. Hidden Markov models for burst error characterization in indoor radio channels. IEEE Trans. Veh. Technol., 46(4):1006–1020. [doi:10.1109/25.653074]

    Article  Google Scholar 

  • Gilbert, E.N., 1960. Capacity of a burst-noise channel. Bell Syst. Tech. J., 39:1253–1265.

    Google Scholar 

  • Han, B., Ji, L., Lee, S., Bhattacharjee, B., Miller, R.R., 2009. All Bits are not Equal? A Study of IEEE 802.11 Communication Bit Errors. IEEE Int. Conf. on Computer Communications, p.1602–1610. [doi:10.1109/INFCOM.2009.5062078]

  • Kamthe, A., Carreira-Perpian, M.A., Cerpa, A.E., 2009. M&M: Multi-level Markov Model for Wireless Link Simulations. Proc. 7th ACM Conf. on Embedded Networked Sensor Systems, p.57–70. [doi:10.1145/1644038.1644045]

  • Kandhway, K., Anand, A., Bhattacharjee, R., 2008. A Generative Model for Burst Error Characterization in a Fading Channel. Int. Technical Conf. of IEEE Region 10, the Asia Pacific Region, p.1–5. [doi:10.1109/TENCON.2008.4766506]

  • Kopke, A.K., Willig, A., Karl, H., 2003. Chaotic Maps as Parsimonious Bit Error Models of Wireless Channels. 22nd IEEE Annual Joint Conf. on Computer and Communications, p.513–523. [doi:10.1109/INFCOM.2003.1208702]

  • Qureshi, H.K., Ahmad, J.J., Khayam, S.A., Rakocevic, V., Rajarajan, M., 2011. Graph-theoretic complexity reduction for Markovian wireless channel models. Wirel. Pers. Commun., 58(4):831–849. [doi:10.1007/s11277-009-9908-8]

    Article  Google Scholar 

  • Salih, O.S., Wang, C.X., Laurenson, D.I., 2008. Double Embedded Processes Based Hidden Markov Models for Binary Digital Wireless Channels. IEEE Int. Symp. on Wireless Communication Systems, p.219–223. [doi:10.1109/ISWCS.2008.4726050]

  • Salih, O.S., Wang, C.X., Laurenson, D.I., 2009. Three Layered Hidden Markov Models for Binary Digital Wireless Channels. IEEE Int. Conf. on Communications, p.1–5. [doi:10.1109/ICC.2009.5199522]

  • Wang, C.X., Xu, W., 2007. A new class of generative models for burst error characterization in digital wireless channels. IEEE Trans. Commun., 55(3):453–462. [doi:10.1109/TCOMM.2007.892447]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Lu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61103010, 61103190, and 60803100), the National Basic Research Program (973) of China (No. 2012CB933500), and the High-Tech R&D Program (863) of China (No. 2012AA011001)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Yang, W., Wang, Jh. et al. An independent but not identically distributed bit error model for heavy-tailed wireless channels. J. Zhejiang Univ. - Sci. C 14, 42–49 (2013). https://doi.org/10.1631/jzus.C1200175

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1200175

Key words

CLC number

Navigation