Skip to main content
Log in

U-shaped energy loss curves utilization for distributed generation optimization in distribution networks

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We propose novel techniques to find the optimal location, size, and power factor of distributed generation (DG) to achieve the maximum loss reduction for distribution networks. Determining the optimal DG location and size is achieved simultaneously using the energy loss curves technique for a pre-selected power factor that gives the best DG operation. Based on the network’s total load demand, four DG sizes are selected. They are used to form energy loss curves for each bus and then for determining the optimal DG options. The study shows that by defining the energy loss minimization as the objective function, the time-varying load demand significantly affects the sizing of DG resources in distribution networks, whereas consideration of power loss as the objective function leads to inconsistent interpretation of loss reduction and other calculations. The devised technique was tested on two test distribution systems of varying size and complexity and validated by comparison with the exhaustive iterative method (EIM) and recently published results. Results showed that the proposed technique can provide an optimal solution with less computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Mouti, F.S., El-Hawary, M.E., 2011. Heuristic curve-fitted technique for distribution generation optimization in radial distribution feeder systems. IET Gener. Transm. Distr., 5(2):172–180. [doi:10.1049/iet-gtd.2009.0739]

    Article  Google Scholar 

  • Acharya, N., Mahat, P., Mithulananthan, N., 2006. An analytical approach for DG allocation in primary distribution network. Int. J. Electr. Power Energy Syst., 28(10):669–678. [doi:10.1016/j.ijepes.2006.02.013]

    Article  Google Scholar 

  • Al Rashidi, M.R., Al Hajri, M.F., 2011. Optimal planning of multiple distributed generation sources in distribution networks: a new approach. Energy Conv. Manag., 52(11): 3301–3308. [doi:10.1016/j.enconman.2011.06.001]

    Article  Google Scholar 

  • Anwar, A., Pota, H.R., 2011. Loss Reduction of Power Distribution Network Using Optimum Size and Location of Distributed Generation. Australasian Universities Power Engineering Conf., p.1–6.

    Google Scholar 

  • Biswas, S., Goswami, S.K., Chatterjee, A., 2012. Optimum distributed generation placement with voltage sag effect minimization. Energy Conv. Manag., 53(1):163–174. [doi:10.1016/j.enconman.2011.08.020]

    Article  Google Scholar 

  • Chang, R.F., Lu, C.N., 2003. Load profile assignment of low voltage for power retail market applications customers. IEE Gener. Trans. Distr., 150(3):263–267. [doi:10.1049/ip-gtd:20030203]

    Article  Google Scholar 

  • Chicco, G., Napoli, R., Piglione, F., 2004. Load pattern-based classification of electricity customers. IEEE Trans. Power Syst., 19(2):1232–1239. [doi:10.1109/TPWRS.2004.826810]

    Article  Google Scholar 

  • Chiradeja, P., Ramakumar, R., 2004. An approach to quantify the technical benefits of distributed generation. IEEE Trans. Energy Conv., 19(4):764–773. [doi:10.1109/TEC.2004.827704]

    Article  Google Scholar 

  • Ghosh, S., Ghoshal, S.P., Ghosh, S., 2010. Optimal sizing and placement of distributed generation in a network system. Int. J. Electr. Power Energy Syst., 32(8):849–856. [doi:10.1016/j.ijepes.2010.01.029]

    Article  Google Scholar 

  • Gozel, T., Hocaoglu, M.H., 2009. An analytical method for the sizing and sitting of distributed generators in radial systems. Electr. Power Syst. Res., 79(6):912–918. [doi:10.1016/j.epsr.2008.12.007]

    Article  Google Scholar 

  • Hung, D.Q., Mithulananthan, N., 2013. Multiple distributed generators placement in primary distribution networks for loss reduction. IEEE Trans. Ind. Electron., 60(4):1700–1708. [doi:10.1109/TIE.2011.2112316]

    Article  Google Scholar 

  • Hung, D.Q., Mithulananthan, N., Bansal, R.C., 2010. Analytical expressions for DG allocation in primary distribution networks. IEEE Trans. Energy Conv., 25(3):814–820. [doi:10.1109/TEC.2010.2044414]

    Article  Google Scholar 

  • Kashem, M.A., Le, A.D.T., Negnevistky, M., Ledwich, G., 2008. Distributed Generation for Minimizing of Power Losses in Distribution Systems. IEEE Power Engineering Society General Meeting, p.1–8. [doi:10.1109/PES.2006.1709179]

    Google Scholar 

  • Madureira, A.G., Lopes, J.A.P., 2009. Coordinated voltage support in distribution networks with distributed generation and microgrids. IET Renew. Power Gener., 3(4): 439–454. [doi:10.1049/iet-rpg.2008.0064]

    Article  Google Scholar 

  • Mendoza, J.E., Morales, D.A., López, R.A., 2007. Multiobjective location of automatic voltage regulators in a radial distribution network using a micro genetic algorithm. IEEE Trans. Power Syst., 22(1):404–412. [doi:10. 1109/TPWRS.2006.887963]

    Article  Google Scholar 

  • Moradi, M.H., Abedini, M., 2012. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst., 34(1):66–74. [doi:10.1016/j. ijepes.2011.08.023]

    Article  Google Scholar 

  • Nara, K., Hayashi, Y., Ikeda, K., Ashizawa, T., 2001. Application of Tabu Search to Optimal Placement of Distributed Generators. IEEE Power Engineering Society Winter Meeting, 2:918–923. [doi:10.1109/PESW.2001.916995]

    Google Scholar 

  • Ochoa, L.F., Harrison, G.P., 2011. Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation. IEEE Trans. Power Syst., 26(1):198–205. [doi:10.1109/TPWRS.2010.2049036]

    Article  Google Scholar 

  • Ochoa, L.F., Padilha-Feltrin, A., Harrison, G.P., 2006. Evaluating distributed generation impacts with a multiobjective index. IEEE Trans. Power Del., 21(3):1452–1458. [doi:10.1109/TPWRD.2005.860262]

    Article  Google Scholar 

  • Ochoa, L.F., Dent, C.J., Harrison, G.P., 2010. Distribution network capacity assessment: variable DG and active networks. IEEE Trans. Power Syst., 25(1):87–95. [doi:10.1109/TPWRS.2009.2031223]

    Article  Google Scholar 

  • Ochoa, L.F., Keane, A., Harrison, G.P., 2011. Minimizing the reactive support for distributed generation: enhanced passive operation and smart distribution networks. IEEE Trans. Power Syst., 26(1):2134–2142. [doi:10.1109/TPWRS.2011.2122346]

    Article  Google Scholar 

  • Porkar, S., Abbaspour-Tehrani-fard, A., Poure, P., Saadate, S., 2011. Distribution system planning considering integration of distributed generation and load curtailment options in a competitive electricity market. Electr. Eng., 93(1):23–32. [doi:10.1007/s00202-010-0189-8]

    Article  Google Scholar 

  • Soroudi, A., Ehsan, M., 2011. A possibilistic-probabilistic tool for evaluating the impact of stochastic renewable and controllable power generation on energy losses in distribution networks—a case study. Renew. Sustain. Energy Rev., 15(1):794–800. [doi:10.1016/j.rser.2010.09.035]

    Article  Google Scholar 

  • Soroudi, A., Caire, R., Hajsaid, N., Ehsan, M., 2011. Probabilistic dynamic multi-objective model for renewable and non-renewable distributed generation planning. IET Gener. Transm. Distr., 5(11):1173–1182. [doi:10.1049/ietgtd.2011.0173]

    Article  Google Scholar 

  • Tong, S., Miu, K.N., 2005. A network-based distributed slack bus model for DGs in unbalanced power flow studies. IEEE Trans. Power Syst., 20(2):835–842. [doi:10.1109/TPWRS.2005.846056]

    Article  Google Scholar 

  • Wang, C., Nehrir, M.H., 2004. Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE Trans. Power Syst., 19(4):2068–2076. [doi:10.1109/TPWRS.2004.836189]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimi, R., Ehsan, M. & Nouri, H. U-shaped energy loss curves utilization for distributed generation optimization in distribution networks. J. Zhejiang Univ. - Sci. C 14, 887–898 (2013). https://doi.org/10.1631/jzus.C1200282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1200282

Key words

CLC number

Navigation