Skip to main content
Log in

Application of formal languages in polynomial transformations of instances between NP-complete problems

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We propose the usage of formal languages for expressing instances of NP-complete problems for their application in polynomial transformations. The proposed approach, which consists of using formal language theory for polynomial transformations, is more robust, more practical, and faster to apply to real problems than the theory of polynomial transformations. In this paper we propose a methodology for transforming instances between NP-complete problems, which differs from Garey and Johnson’s. Unlike most transformations which are used for proving that a problem is NP-complete based on the NP-completeness of another problem, the proposed approach is intended for extrapolating some known characteristics, phenomena, or behaviors from a problem A to another problem B. This extrapolation could be useful for predicting the performance of an algorithm for solving B based on its known performance for problem A, or for taking an algorithm that solves A and adapting it to solve B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aho, A.V., Sethi, R., Ullman, J.D., 1986. Compilers: Principles. Techniques, and Tools. Addison-Wesley, USA, p.14–16.

    Google Scholar 

  • Backus, J.W., 1959. The Syntax and Semantics of the Proposed International Algebraic Language of the Zurich Association for Computing Machinery (ACM) and the Association for Applied Mathematics and Mechanics (GAMM) Conference. Proc. Int. Conf. on Information Processing, p.125–132.

    Google Scholar 

  • Bao, J., Zhou, L.J., Yan, Y., 2012. Analysis on complexity of neural networks using integer weights. Appl. Math. Inf. Sci., 6:317–323.

    MathSciNet  Google Scholar 

  • Bennett, J.H., 1962. On Spectra. PhD Thesis, Princeton University, USA.

    Google Scholar 

  • Bennett, C.H., Brassard, G., Jozsa, R., Mayers, D., Peres, A., Schumacher, B., Wootters, W.K., 1994. Reduction of quantum entropy by reversible extraction of classical information. J. Mod. Opt., 41(12):2307–2314. [doi:10.1080/09500349414552161]

    Article  MATH  Google Scholar 

  • Brown, J.C., 1960. Loglan. Sci. Am., 202:53–63. [doi:10.1038/scientificamerican0660-53]

    Article  Google Scholar 

  • Cobham, A., 1964. The Intrinsic Computational Difficulty of Functions. Proc. Congress for Logic, Mathematics, and Philosophy of Science, p.24–30.

    Google Scholar 

  • Cook, S.A., 1971. The Complexity of Theorem Proving Procedures. Proc. 3rd ACM Symp. on Theory of Computing, p.151–158.

    Google Scholar 

  • Cook, S.A., 1983. An overview of computational complexity. Commun. ACM, 26(6):400–408. [doi:10.1145/358141.358144]

    Article  MATH  Google Scholar 

  • Deutsch, D., 1989. Quantum computational networks. Proc. R. Soc. Lond. A, 425(1868):73–90. [doi:10.1098/rspa.1989.0099]

    Article  MathSciNet  MATH  Google Scholar 

  • Edmonds, J., 1965. Paths, trees, and flowers. Canad. J. Math., 17:449–467. [doi:10.4153/CJM-1965-045-4]

    Article  MathSciNet  MATH  Google Scholar 

  • Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: a Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, p.1–10.

    MATH  Google Scholar 

  • Hartmanis, J., Stearns, R.E., 1965. On the computational complexity of algorithms. Trans. Am. Math. Soc., 117(5): 285–306. [doi:10.1090/S0002-9947-1965-0170805-7]

    Article  MathSciNet  MATH  Google Scholar 

  • Hopcroft, J., Ullman, J., 1969. Formal Languages and Their Relation to Automata. Addison-Wesley, USA, p.1–7.

    MATH  Google Scholar 

  • Jonsson, P., Bäckström, C., 1994. Complexity Results for State-Variable Planning under Mixed Syntactical and Structural Restriction. Proc. 6th Int. Conf. on Artificial Intelligence: Methodology, Systems, Applications, p.205–213.

    Google Scholar 

  • Karp, R.M., 1972. Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (Eds.), Complexity of Computer Computations. Plenum Press, New York, p.85–104. [doi:10.1007/978-1-4684-2001-2_9]

  • Kolmogorov, A.N., 1965. Three approaches to the quantitative definition of information. Prob. Inf. Transm., 1:1–7.

    Google Scholar 

  • Levine, J., 2009. Flex & Bison. O’Reilly Media, USA.

    Google Scholar 

  • Martello, S., Toth, P., 1991. Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons, England, p.221–236.

    Google Scholar 

  • Orponen, P., 1990. On the Instance Complexity of NP-Hard Problems. Proc. 5th Annual Structure in Complexity Theory Conf., p.20–27. [doi:10.1109/SCT.1990.113951]

    Chapter  Google Scholar 

  • Papadimitriou, C., Steiglitz, K., 1982. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, New Jersey, p.342–357.

    MATH  Google Scholar 

  • Papadimitriou, C.H., 1994. Computational Complexity. Addison-Wesley, UK, p.260–265.

    MATH  Google Scholar 

  • Rabin, M.O., 1959. Speed of Computation and Classification of Recursive Sets. Third Convention of Scientific Societies, p.1–2.

    Google Scholar 

  • Ruiz-Vanoye, J.A., Díaz-Parra, O., 2011. An overview of the theory of instances computational complexity. Int. J. Combin. Optim. Probl. Inf., 2(2):21–27.

    Google Scholar 

  • Ruiz-Vanoye, J.A., Díaz-Parra, O., Pérez-Ortega, J., Pazos, R.A., Reyes Salgado, G., González-Barbosa, J.J., 2010. Complexity of Instances for Combinatorial Optimization Problems. In: Al-Dahoud, A. (Ed.), Computational Intelligence & Modern Heuristics, Chapter 19. IN-TECH Education and Publishing, p.319–330. [doi:10.5772/7807]

    Google Scholar 

  • Ruiz-Vanoye, J.A., Pérez-Ortega, J., Pazos R.A., Díaz-Parra, O., Frausto-Solís, J., Fraire-Huacuja, H.J., Cruz-Reyes, L., Martínez-Flores, J.A., 2011. Survey of polynomial transformations between NP-complete problems. J. Comput. Appl. Math., 235(16):4851–4865. [doi:10.1016/j.cam.2011.02.018]

    Article  MathSciNet  MATH  Google Scholar 

  • Shannon, C.E., 1948. The mathematical theory of communication. Bell Syst. Techn. J., 27(3):379–423. [doi:10.1002/j.1538-7305.1948.tb01338.x]

    Article  MathSciNet  MATH  Google Scholar 

  • Sipser, M., 1983. A Complexity Theoretic Approach to Randomness. Proc. 15th ACM Symp. on Theory of Computing, p.330–335.

    Google Scholar 

  • Solomonoff, R., 1960. A Preliminary Report on a General Theory of Inductive Inference. Report V-131, Zator Co., Cambridge, MA.

    Google Scholar 

  • Solomonoff, R., 1964a. A formal theory of inductive inference. Part I. Inf. Control, 7(1):1–22. [doi:10.1016/S0019-9958(64)90223-2]

    Article  MathSciNet  MATH  Google Scholar 

  • Solomonoff, R., 1964b. A formal theory of inductive inference. Part II. Inf. Control, 7(2):224–254. [doi:10.1016/S0019-9958(64)90131-7]

    Article  MathSciNet  MATH  Google Scholar 

  • Stockmeyer, L.J., 1979. Classifying the Computational Complexity of Problems. Research Report RC 7606, Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights, NY.

    Google Scholar 

  • Traub, J.F., Wasilkowski, G.W., Woźniakowski, H., 1988. Information-Based Complexity. Academic Press, New York.

    MATH  Google Scholar 

  • Turing, A.M., 1937. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc., s2-42(1):230–265. [doi:10.1112/plms/s2-42.1.230]

    Article  MathSciNet  Google Scholar 

  • Wozniakowski, H., 1985. Survey of information-based complexity. J. Compl., 1(1):11–44. [doi:10.1016/0885-064X(85)90020-2]

    Article  MathSciNet  MATH  Google Scholar 

  • Yao, A.C., 1993. Quantum Circuit Complexity. Proc. 34th Annual IEEE Symp. on Foundations of Computer Science, p.352–361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Ruiz-Vanoye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Vanoye, J.A., Pérez-Ortega, J., Pazos Rangel, R.A. et al. Application of formal languages in polynomial transformations of instances between NP-complete problems. J. Zhejiang Univ. - Sci. C 14, 623–633 (2013). https://doi.org/10.1631/jzus.C1200349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1200349

Key words

CLC number

Navigation