Skip to main content
Log in

Underwater glider design based on dynamic model analysis and prototype development

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Underwater gliders are efficient mobile sensor platforms that can be deployed for months at a time, traveling thousands of kilometers. Here, we describe our development of a coastal 200 m deep underwater glider, which can serve as an ocean observatory platform operating in the East China Sea. Our glider is developed based on dynamic model analysis: steady flight equilibrium analysis gives the varied range of moving mass location for pitch control and the varied vehicle volume for buoyancy control; a stability analysis is made to discuss the relationship between the stability of glider motion and the location of glider wings and rudder by root locus investigation of glider longitudinal- and lateral-directional dynamics, respectively. There is a tradeoff between glider motion stability and control authority according to the specific glider mission requirements. The theoretical analysis provides guidelines for vehicle design, based on which we present the development progress of the Zhejiang University (ZJU) glider. The mechanical, electrical, and software design of the glider is discussed in detail. The performances of glider key functional modules are validated by pressure tests individually; preliminary pool trials of the ZJU glider are also introduced, indicating that our glider functions well in water and can serve as a sensor platform for ocean sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhatta, P., 2006. Nonlinear Stability and Control of Gliding Vehicles. PhD Thesis, Princeton University, New Jersey, USA.

    Google Scholar 

  • Encyclopedia Britannica, 2012. Encyclopædia Britannica Online Academic Edition. Encyclopædia Britannica Inc. Available from http://global.britannica.com/EBchecked/topic/176576/East-China-Sea [Accessed on Dec. 15, 2012].

    Google Scholar 

  • Eriksen, C.C., Osse, T.J., Light, R.D., Wen, T., Lehman, T.W., Sabin, P.L., Ballard, J.W., Chiodi, A.M., 2001. Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J. Ocean. Eng., 26(4):424–436. [doi:10.1109/48.972073]

    Article  Google Scholar 

  • Etkin, B., Reid, L.D., 1995. Dynamics of Flight: Stability and Control. John Wiley and Sons, Inc., New York, USA, p.93–196.

    Google Scholar 

  • Fan, S., Wolek, A., Woolsey, C.A., 2012. Stability and Performance of Underwater Gliders. IEEE OCEANS, p.1–10. [doi:10.1109/OCEANS.2012.6404993]

    Google Scholar 

  • Fossen, T., 1995. Guidance and Control of Ocean Vehicles. John Wiley and Sons, Inc., New York, USA, p.5–54.

    Google Scholar 

  • Graver, J.G., 2005. Underwater Gliders: Dynamics, Control and Design. PhD Thesis, Princeton University, New Jersey, USA.

    Google Scholar 

  • Hussain, N.A.A., Arshad, M.R., Mohd-Mokhtar, R., 2011. Underwater glider modelling and analysis for net buoyancy, depth and pitch angle control. Ocean Eng., 38(16): 1782–1791. [doi:10.1016/j.oceaneng.2011.09.001]

    Article  Google Scholar 

  • Jenkins, S.A., Humphreys, D.E., Sherman, J., Osse, J., Jones, C., Leonard, N.E., Bachmayer, R., Graver, J., Clem, T., Carroll, P., et al., 2003. Underwater Glider System Study. Technical Report No. 53, Scripps Institution of Oceanography, University of California, San Diego, CA.

    Google Scholar 

  • Leonard, N.E., Graver, J.G., 2001. Model-based feedback control of autonomous underwater gliders. IEEE J. Ocean. Eng., 26(4):633–645. [doi:10.1109/48.972106]

    Article  Google Scholar 

  • Li, J., Song, B., Shao, C., 2008. Tracking control of autonomous underwater vehicles with internal moving mass. Acta Autom. Sin., 34(10):1319–1323. [doi:10.3724/SP.J.1004.2008.01319]

    Article  MathSciNet  Google Scholar 

  • Mahmoudian, N., 2009. Efficient Motion Planning and Control for Underwater Gliders. PhD Thesis, Virginia Polytechnic Institute and State University, Virginia, USA.

    Google Scholar 

  • Mahmoudian, N., Woolsey, C.A., 2008. Underwater Glider Motion Control. IEEE Conf. on Decision Control, p.552–557.

    Google Scholar 

  • Mahmoudian, N., Geisbert, J., Woolsey, C.A., 2010. Approximate analytical turning conditions for underwater gliders and implications for path planning. IEEE J. Ocean. Eng., 35(1):131–143. [doi:10.1109/JOE.2009.2039655]

    Article  Google Scholar 

  • Mason, W.H., 2001. Citing Electronic Sources of Information. Virginia Tech. Available from http://www.dept.aoe.vt.edu/~mason/Mason_f/ConfigAero.html [Accessed on June 15, 2012].

    Google Scholar 

  • McCormick, B.W., 1979. Aerodynamics, Aeronautics and Flight Mechanics. John Wiley and Sons, Inc., New York, USA, p.22–210.

    Google Scholar 

  • Newman, J.N., 1977. Marine Hydrodynamics. MIT Press, Cambridge, MA, USA, p.102–152.

    Google Scholar 

  • Rudnick, D.L., Davis, R.E., Eriksen, C.C., Fratantoni, D.M., Perry, M.J., 2004. Underwater glider for ocean research. Mar. Technol. Soc. J., 38(1):48–59.

    Google Scholar 

  • Sherman, J., Davis, R.E., Owens, W.B., Valdes, J., 2001. The autonomous underwater glider spray. IEEE J. Ocean. Eng., 26(4):437–446. [doi:10.1109/48.972076]

    Article  Google Scholar 

  • Stommel, H., 1989. The Slocum mission. Oceanography, 2(1):22–25. [doi:10.5670/oceanog.1989.26]

    Article  Google Scholar 

  • Wang, S., Sun, X., Wang, Y., Wu, J., Wang, X., 2011. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider. China Ocean Eng., 25(1):97–112. [doi:10.1007/s13344-011-0008-7]

    Article  MATH  Google Scholar 

  • Wang, Z., Cai, R., 2005. The Design of Chemical Pressure Vessel. Chemical Industry Press, Beijing, China, p.148–156 (in Chinese).

    Google Scholar 

  • Warren, F.P., 2009. Mechanics of Flight. John Wiley and Sons, Inc., Hoboken, New Jersey, USA, p.377–597.

    Google Scholar 

  • Webb, D.C., Simonetti, P.J., Jones, C.P., 2001. SLOCUM: an underwater glider propelled by environmental energy. IEEE J. Ocean. Eng., 26(4):447–452. [doi:10.1109/48.972077]

    Article  Google Scholar 

  • Woolsey, C.A., 2005. Reduced Hamiltonian dynamics for a rigid body/mass particle system. J. Guid. Control Dynam., 28(1):131–138. [doi:10.2514/1.5409]

    Article  Google Scholar 

  • Yang, H., Ma, J., 2010. Nonlinear control for autonomous underwater glider motion based on inverse system method. J. Shanghai Jiaotong Univ. (Sci.), 15(6):713–718. [doi:10.1007/s12204-010-1074-3]

    Article  MATH  Google Scholar 

  • Yu, J., Zhang, A., Jin, W., Chen, Q., Tian, Y., Liu, C., 2011. Development and experiments of the sea-wing underwater glider. China Ocean Eng., 25(4):721–736. [doi:10.1007/s13344-011-0058-x]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can-jun Yang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51221004) and the Natural Science Foundation of Zhejiang Province, China (No. R1090453)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Ss., Yang, Cj., Peng, Sl. et al. Underwater glider design based on dynamic model analysis and prototype development. J. Zhejiang Univ. - Sci. C 14, 583–599 (2013). https://doi.org/10.1631/jzus.C1300001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300001

Key words

CLC number

Navigation