Skip to main content
Log in

Activity-based simulation using DEVS: increasing performance by an activity model in parallel DEVS simulation

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Improving simulation performance using activity tracking has attracted attention in the modeling field in recent years. The reference to activity has been successfully used to predict and promote the simulation performance. Tracking activity, however, uses only the inherent performance information contained in the models. To extend activity prediction in modeling, we propose the activity enhanced modeling with an activity meta-model at the meta-level. The meta-model provides a set of interfaces to model activity in a specific domain. The activity model transformation in subsequence is devised to deal with the simulation difference due to the heterogeneous activity model. Finally, the resource-aware simulation framework is implemented to integrate the activity models in activity-based simulation. The case study shows the improvement brought on by activity-based simulation using discrete event system specification (DEVS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balsamo, S., di Marco, A., Inverardi, P., et al., 2004. Model-based performance prediction in software development: a survey. IEEE Trans. Softw. Eng., 30(5):295–310. [doi:10.1109/TSE.2004.9]

    Article  Google Scholar 

  • Boukerche, A., Das, S.K., 1997. Dynamic load balancing strategies for conservative parallel simulations. Proc. 11th Workshop on Parallel and Distributed Simulation, p.20–28. [doi:10.1109/PADS.1997.594582]

    Google Scholar 

  • Concepcion, A.I., Zeigler, B.F., 1988. DEVS formalism: a framework for hierarchical model development. IEEE Trans. Softw. Eng., 14(2):228–241. [doi:10.1109/32.4640]

    Article  Google Scholar 

  • Czarnecki, K., Helsen, S., 2003. Classification of model transformation approaches. OOPSLA Workshop on Generative Techniques in the Context of Model-Driven Architecture, p.1–17.

    Google Scholar 

  • D’Abreu, M.C., Wainer, G.A., 2005. M/CD++: modeling continuous systems using Modelica and DEVS. 13th IEEE Int. Symp. on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, p.229–236. [doi:10.1109/MASCOTS.2005.36]

    Chapter  Google Scholar 

  • Deelman, E., Szymanski, B.K., 1998. Dynamic load balancing in parallel discrete event simulation for spatially explicit problems. Proc. 12th Workshop on Parallel and Distributed Simulation, p.46–53. [doi:10.1109/PADS.1998.685 269]

    Google Scholar 

  • Emerson, M., Sztipanovits, J., 2006. Techniques for metamodel composition. 6th Workshop on Domain Specific Modeling, p.123–139.

    Google Scholar 

  • Guo, G., 2013. User Manual of OneModel. National University of Defense Technology, Changsha, China (in Chinese).

    Google Scholar 

  • Hu, X.L., Ntaimo, L., 2006. Dynamic multi-resolution cellular space modeling for forest fire simulation. Proc. Spring Simulation Multi-conf., p.95–102.

    Google Scholar 

  • Hu, X.L., Ntaimo, L., 2008. DEVS-FIRE: towards an integrated simulation environment for surface wildfire spread and containment. Simulation, 84(4):137–155. [doi:10.1177/0037549708094047]

    Article  Google Scholar 

  • Hu, X.L., Zeigler, B.P., 2013. Linking information and energy—activity-based energy-aware information processing. Simulation, 89(4):435–450. [doi:10.1177/0037549711400778]

    Article  Google Scholar 

  • Hu, X.L., Muzy, A., Ntaimo, L., 2005. A hybrid agent-cellular space modeling approach for fire spread and suppression simulation. Proc. Winter Simulation Conf., p.248–255. [doi:10.1109/WSC.2005.1574258]

    Google Scholar 

  • Jammalamadaka, R., 2003. Activity Characterization of Spatial Models: Application to Discrete Event Solution of Partial Differential Equations. PhD Thesis, the University of Arizona, Tucson, USA.

    Google Scholar 

  • Kelly, S., Tolvanen, J.P., 2008. Domain-Specific Modeling: Enabling Full Code Generation. Wiley-IEEE Computer Society Press, USA.

    Book  Google Scholar 

  • Lagerström, R., Chenine, M., Johnson, P., et al., 2008. Probabilistic metamodel merging. CAiSE Forum, p.25–28.

    Google Scholar 

  • MacNeil, T., 2004. Don’t be misled by MIPS. IBM Systems Magazine Webinars.

    Google Scholar 

  • Muzy, A., Zeigler, B.P., 2008. Introduction to the activity tracking paradigm in component-based simulation. The Open Cybern. Syst. J., 2:30–38.

    Article  Google Scholar 

  • Muzy, A., Nutaro, J.J., Zeigler, B.P., et al., 2008. Modeling and simulation of fire spreading through the activity tracking paradigm. Ecol. Model., 219(1–2):212–225. [doi:10.1016/j.ecolmodel.2008.08.017]

    Article  Google Scholar 

  • Muzy, A., Touraille, L., Vangheluwe, H., et al., 2010. Activity regions for the specification of discrete event systems. Proc. Spring Simulation Multi-conf., p.1–7. [doi:10.1145/1878537.1878679]

    Google Scholar 

  • Muzy, A., Jammalamadaka, R., Ziegler, B.P., et al., 2011. The activity-tracking paradigm in discrete-event modeling and simulation: the case of spatially continuous distributed systems. Simulation, 87(5):449–464. [doi:10.1177/0037549710365155]

    Article  Google Scholar 

  • Petriu, D.C., Shen, H., 2002. Applying the UML performance profile: graph grammar-based derivation of LQN models from UML specifications. Proc. 12th Int. Conf. on Modelling Tools and Techniques for Computer and Communication System Performance Evaluation, p.159–177.

    Chapter  Google Scholar 

  • Qiu, F.S., Hu, X.L., 2013. Spatial activity-based modeling for pedestrian crowd simulation. Simulation, 89(4):451–465. [doi:10.1177/0037549711435950]

    Article  Google Scholar 

  • Sendall, S., Kozaczynski, W., 2003. Model transformation: the heart and soul of model-driven software development. IEEE Softw., 20(5):42–45. [doi:10.1109/MS.2003.1231 150]

    Article  Google Scholar 

  • Shibata, D., Alfenas, D., Guiraldelli, R., et al., 2012. Activity based scheduling simulator for product transport using pipeline networks. Proc. Winter Simulation Conf., p.1–12.

    Google Scholar 

  • Syriani, E., Vangheluwe, H., 2007. Programmed graph rewriting with DEVS. 3rd Int. Symp. on Applications of Graph Transformations with Industrial Relevance, p.136–151. [doi:10.1007/978-3-540-89020-1_11]

    Google Scholar 

  • Vangheluwe, H., 2000. DEVS as a common denominator for multi-formalism hybrid systems modelling. IEEE Int. Symp. on Computer-Aided Control System Design, p.129–134. [doi:10.1109/CACSD.2000.900199]

    Google Scholar 

  • Vangheluwe, H., de Lara, J., 2004. Computer automated multi-paradigm modelling for analysis and design of traffic networks. Proc. Winter Simulation Conf., p.249–258.

    Google Scholar 

  • Welling, L., Thomson, L., 2003. PHP and MySQL Web Development. Sams Publishing, USA.

    Google Scholar 

  • Zeigler, B.P., Praehofer, H., Kim, T.G., 2000. Theory of Modeling and Simulation (2nd Ed.). Academic Press, USA.

    Google Scholar 

  • Zeigler, B.P., Jammalamadaka, R., Akerkar, S.R., 2004. Continuity and change (activity) are fundamentally related in DEVS simulation of continuous systems. 13th Int. Conf. on AI, Simulation, Planning in High Autonomy Systems, p.1–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 71303252 and 91024030)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Zhang, Lb., Liu, Xc. et al. Activity-based simulation using DEVS: increasing performance by an activity model in parallel DEVS simulation. J. Zhejiang Univ. - Sci. C 15, 13–30 (2014). https://doi.org/10.1631/jzus.C1300121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300121

Key words

CLC number

Navigation