Skip to main content
Log in

An improved parallel contrast-aware halftoning

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Digital image halftoning is a widely used technique. However, achieving high fidelity tone reproduction and structural preservation with low computational time cost remains a challenging problem. This paper presents a highly parallel algorithm to boost real-time application of serial structure-preserving error diffusion. The contrast-aware halftoning approach is one such technique with superior structure preservation, but it offers only a limited opportunity for graphics processing unit (GPU) acceleration. Our method integrates contrast-aware halftoning into a new parallelizable error-diffusion halftoning framework. To eliminate visually disturbing artifacts resulting from parallelization, we propose a novel multiple quantization model and space-filling curve to maintain tone consistency, blue-noise property, and structure consistency. Our GPU implementation on a commodity personal computer achieves a real-time performance for a moderately sized image. We demonstrate the high quality and performance of the proposed approach with a variety of examples, and provide comparisons with state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Analoui, M., Allebach, J.P., 1992. Model-based halftoning using direct binary search. SPIE, p.96–108.

    Google Scholar 

  • Bayer, B.E., 1973. An Optimum Method for Two-Level Rendition of Continuous-Tone Pictures. IEEE Int. Conf. on Communications, p.26-11–26-15.

    Google Scholar 

  • Billotet-Hoffmann, C., Bryngdahl, O., 1983. On the error diffusion technique for electronic halftoning. Proc. Soc. Inf. Display, 24(3):253–258.

    Google Scholar 

  • Chang, J.H., Alain, B., Ostromoukhov, V., 2009. Structure-aware error diffusion. ACM Trans. Graph., 28(5):162:1–162:8. [doi:10.1145/1661412.1618508]

    Google Scholar 

  • Chang, T.C., Allebach, J.P., 2003. Memory efficient errordiffusion. IEEE Trans. Image Process., 12(11):1352–1366. [doi:10.1109/TIP.2003.818214]

    Article  Google Scholar 

  • Eschbach, R., Knox, K.T., 1991. Error-diffusion algorithm with edge enhancement. J. Opt. Soc. Am. A, 8(12):1844–1850. [doi:10.1364/JOSAA.8.001844]

    Article  Google Scholar 

  • Floyd, R.W., Steinberg, L., 1976. An adaptive algorithm for spatial grayscale. Proc. Soc. Inf. Display, 17(2):75–77.

    Google Scholar 

  • Knuth, D.E., 1987. Digital halftones by dot diffusion. ACM Trans. Graph., 6(4):245–273. [doi:10.1145/35039.35040]

    Article  MATH  Google Scholar 

  • Li, H., Mould, D., 2010. Contrast-aware halftoning. Comput. Graph. Forum, 29(2):273–280. [doi:10.1111/j.1467-8659.2009.01596.x]

    Article  Google Scholar 

  • Li, P.S., Allebach, J.P., 2004. Tone-dependent error diffusion. IEEE Trans. Image Process., 13(2):201–215. [doi:10.1109/TIP.2003.819232]

    Article  Google Scholar 

  • Li, P.S, Allebach, J.P., 2005. Block interlaced pinwheel error diffusion. J. Electron. Imag., 14(2):023007. [doi:10.1117/1.1900136]

    Article  Google Scholar 

  • Matković, K., Neumann, L., Neumann, A., Psik, T., Purgathofer, W., 2005. Global Contrast Factor—a New Approach to Image Contrast. Proc. 1st Eurographics Conf. on Computational Aesthetics in Graphics, Visualization and Imaging, p.159–167.

    Google Scholar 

  • Mitsa, T., Parker, K.J., 1992. Digital halftoning technique using a blue-noise mask. J. Opt. Soc. Am. A, 9(11):1920–1929. [doi:10.1364/JOSAA.9.001920]

    Article  Google Scholar 

  • Neuhoff, D.L., Pappas, T.N., Seshadri, N., 1997. One-dimensional least-squares model-based halftoning. J. Opt. Soc. Am. A, 14(8):1707–1723. [doi:10.1364/JOSAA.14.001707]

    Article  Google Scholar 

  • Ostromoukhov, V., 2001. A Simple and Efficient Error-Diffusion Algorithm. Proc. 28th Annual Conf. on Computer Graphics and Interactive Techniques, p.567–572. [doi:10.1145/383259.383326]

    Google Scholar 

  • Pang, W.M., Qu, Y.G., Wong, T.T., Cohen-Or, D., Heng, P.A., 2008. Structure-aware halftoning. ACM Trans. Graph., 27(3):89:1–89:8. [doi:10.1145/1360612.1360688]

    Google Scholar 

  • Ulichney, R., 1987. Digital Halftoning. MIT Press, Cambridge, MA.

    Google Scholar 

  • Ulichney, R.A., 1988. Dithering with blue noise. Proc. IEEE, 76(1):56–79. [doi:10.1109/5.3288]

    Article  Google Scholar 

  • Velho, L., Gomes, J.D.M., 1991. Digital halftoning with space filling curves. ACM SIGGRAPH Comput. Graph., 25(4): 81–90. [doi:10.1145/127719.122727]

    Article  Google Scholar 

  • Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13(4):600–612. [doi:10.1109/TIP.2003.819861]

    Article  Google Scholar 

  • Wei, L.Y., 2008. Parallel Poisson disk sampling. ACM Trans. Graph., 27(3):20:1–20:9. [doi:10.1145/1360612.1360619]

    Google Scholar 

  • Witten, I.H., Neal, R.M., 1982. Using Peano curves for bilevel display of continuous-tone images. IEEE Comput. Graph. Appl., 2(3):47–52. [doi:10.1109/MCG.1982.1674228]

    Article  Google Scholar 

  • Wong, T.T., Hsu, S.C., 1995. Halftoning with Selective Precipitation and Adaptive Clustering. In: Paeth, A.W. (Ed.), Graphics Gems V (IBM Version). Morgan Kaufmann, Burlington, USA, p.302–313.

    Google Scholar 

  • Wu, H.S., Wong, T.T., Heng, P.A., 2013. Parallel structure-aware halftoning. Multim. Tools Appl., 67(3):529–547. [doi:10.1007/s11042-012-1048-6]

    Article  Google Scholar 

  • Zhang, Y.F., Webber, R.E., 1993. Space Diffusion: an Improved Parallel Halftoning Technique Using Space-Filling Curves. Proc. 20th Annual Conf. on Computer Graphics and Interactive Techniques, p.305–312. [doi:10.1145/166117.166156]

    Google Scholar 

  • Zhou, B.F., Fang, X.F., 2003. Improving mid-tone quality of variable-coefficient error diffusion using threshold modulation. ACM Trans. Graph., 22(3):437–444. [doi:10.1145/882262.882289]

    Article  Google Scholar 

  • Zhou, Y., Chen, C., Wang, Q., Bu, J.J., 2009. Block-Based Threshold Modulation Error Diffusion. Proc. 16th IEEE Int. Conf. on Image Processing, p.2033–2036. [doi:10.1109/ICIP.2009.5413974]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-ting Zheng.

Additional information

Project supported by the National Key Technology R&D Program of China (No. 2012BAH35B03), the National High-Tech R&D Program of China (No. 2012AA12090), the National Natural Science Foundation of China (Nos. 61232012 and 81172124), and the Zhejiang Provincial Natural Science Foundation (No. LY13F020002)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Ly., Chen, W., Wong, Tt. et al. An improved parallel contrast-aware halftoning. J. Zhejiang Univ. - Sci. C 14, 918–929 (2013). https://doi.org/10.1631/jzus.C1300142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300142

Key words

CLC number

Navigation