Skip to main content

Advertisement

Log in

A probabilistic approach for predictive congestion control in wireless sensor networks

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Any node in a wireless sensor network is a resource constrained device in terms of memory, bandwidth, and energy, which leads to a large number of packet drops, low throughput, and significant waste of energy due to retransmission. This paper presents a new approach for predicting congestion using a probabilistic method and controlling congestion using new rate control methods. The probabilistic approach used for prediction of the occurrence of congestion in a node is developed using data traffic and buffer occupancy. The rate control method uses a back-off selection scheme and also rate allocation schemes, namely rate regulation (RRG) and split protocol (SP), to improve throughput and reduce packet drop. A back-off interval selection scheme is introduced in combination with rate reduction (RR) and RRG. The back-off interval selection scheme considers channel state and collision-free transmission to prevent congestion. Simulations were conducted and the results were compared with those of decentralized predictive congestion control (DPCC) and adaptive duty-cycle based congestion control (ADCC). The results showed that the proposed method reduces congestion and improves performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhargava, V., Jose, J., Srinivasan, K., et al., 2012. Q-CMRA: queue-based channel-measurement and rate-allocation. IEEE Trans. Wirel. Commun., 11 (11):4214–4223. [doi:10.1109/TWC.2012.091812.120813]

    Google Scholar 

  • Boutsis, I., Kalogeraki, V., 2012. RADAR: adaptive rate allocation in distributed stream processing systems under bursty workloads. Proc. 31st Symp. on Reliable Distributed Systems, p.285–290. [doi:10.1109/SRDS.2012.55]

    Google Scholar 

  • Cheng, M., Gong, X., Cai, L., 2009. Joint routing and link rate allocation under bandwidth and energy constraints in sensor networks. IEEE Trans. Wirel. Commun., 8(7): 3770–3779. [doi:10.1109/TWC.2009.081134]

    Article  Google Scholar 

  • Cheng, T.E., Bajcsy, R., 2004. Congestion control and fairness for many-to-one routing in sensor networks. Proc. 2nd Int. Conf. on Embedded Networked Sensor Systems, p.148–161. [doi:10.1145/1031495.1031513]

    Google Scholar 

  • Felemban, E., Lee, C., Ekici, E., 2006. MMSPEED: multipath multi-SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE Trans. Mob. Comput., 5(6):738–754. [doi:10.1109/TMC.2006.79]

    Article  Google Scholar 

  • He, T., Stankovic, J.A., Lu, C., et al., 2003. SPEED: a stateless protocol for real-time communication in sensor networks. Proc. 23rd Int. Conf. on Distributed Computing Systems, p.46–55. [doi:10.1109/ICDCS.2003.1203451]

    Google Scholar 

  • Hull, B., Jamieson, K., Balakrishnan, H., 2004. Mitigating congestion in wireless sensor networks. Proc. 2nd Int. Conf. on Embedded Networked Sensor Systems, p.134–147. [doi:10.1145/1031495.1031512]

    Chapter  Google Scholar 

  • Hussain, F.B., Cebi, Y., Shah, G.A., 2008. A multievent congestion control protocol for wireless sensor networks. EURASIP J. Wirel. Commun. Netw., 2008:803271. [doi: 10.1155/2008/803271]

    Article  Google Scholar 

  • Karenos, K., Kalogeraki, V., Krishnamurthy, S.V., 2008. Cluster-based congestion control for sensor networks. ACM Trans. Sens. Netw., 4(1):5:1–5:39. [doi:10.1145/1325651.1325656]

    Article  Google Scholar 

  • Kumar, R., Crepaldi, R., Rowaihy, H., et al., 2008. Mitigating performance degradation in congested sensor networks. IEEE Trans. Mob. Comput., 7(6):682–697. [doi:10.1109/TMC.2008.20]

    Article  Google Scholar 

  • Lee, D., Chung, K., 2010. Adaptive duty-cycle based congestion control for home automation networks. IEEE Trans. Consum. Electron., 56(1):42–47. [doi:10.1109/TCE.2010.5439124]

    Article  MATH  Google Scholar 

  • Lu, C., Blum, B.M., Abdelzaher, T.F., et al., 2002. RAP: a real-time communication architecture for large-scale wireless sensor networks. Proc. 8th IEEE Real-Time and Embedded Technology and Applications Symp., p.55–66. [doi:10.1109/RTTAS.2002.1137381]

    Google Scholar 

  • Mao, Z., Koksal, C.E., Shroff, N.B., 2012. Near optimal power and rate control of multi-hop sensor networks with energy replenishment: basic limitations with finite energy and data storage. IEEE Trans. Automat. Contr., 57(4):815–829. [doi:10.1109/TAC.2011.2166310]

    Article  MathSciNet  Google Scholar 

  • Morell, A., Vicario, J.L., Vilajosana, X., et al., 2011. Optimal rate allocation in cluster-tree WSNs. Sensors, 11(4): 3611–3639. [doi:10.3390/s110403611]

    Article  Google Scholar 

  • Rangwala, S., Gummadi, R., Govindan, R., et al., 2006. Interference-aware fair rate control in wireless sensor networks. Proc. Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications, p.63–74. [doi:10.1145/1159913.1159922]

    Google Scholar 

  • Ren, F., He, T., Das, S., et al., 2011. Traffic-aware dynamic routing to alleviate congestion in wireless sensor networks. IEEE Trans. Parall. Distr. Syst., 22(9):1585–1599. [doi:10.1109/TPDS.2011.24]

    Article  Google Scholar 

  • Teo, J.Y., Ha, Y., Tham, C.K., 2008. Interference-minimized multipath routing with congestion control in wireless sensor network for high-rate streaming. IEEE Trans. Mob. Comput., 7(9):1124–1137. [doi:10.1109/TMC.2008.24]

    Article  Google Scholar 

  • Uthra, R.A., Raja, S.V.K., 2011. PACC: probabilistic approach for congestion control in wireless sensor network. CiiT Int. J. Wirel. Commun., 3:985–990.

    Google Scholar 

  • Uthra, R.A., Raja, S.V.K., 2012. QoS routing in wireless sensor networks—a survey. ACM Comput. Surv., 45(1): 9.1–9.12. [doi:10.1145/2379776.2379785]

    Article  Google Scholar 

  • Wan, C.Y., Eisenman, S.B., Campbell, A.T., 2003. CODA: congestion detection and avoidance in sensor networks. Proc. 1st Int. Conf. on Embedded Networked Sensor Systems, p.266–279. [doi:10.1145/958522.958523]

    Chapter  Google Scholar 

  • Wang, C., Sohraby, K., Lawrence, V., et al., 2006. Priority-based congestion control in wireless sensor networks. Proc. IEEE Int. Conf. on Sensor Networks, Ubiquitous, and Trustworthy Computing, p.22–31. [doi:10.1109/SUTC.2006.1636155]

    Chapter  Google Scholar 

  • Wu, Y., Yuan, Z., Wu, Y., 2013. A predictive control strategy for networked control system with destabilizing transmission factors. Adv. Sci. Eng. Med., 5(1):83–90. [doi:10.1166/asem.2013.1226]

    Article  MathSciNet  Google Scholar 

  • Zawodniok, M., Jagannathan, S., 2007. Predictive congestion control protocol for wireless sensor networks. IEEE Trans. Wirel. Commun., 6(11):3955–3963. [doi:10.1109/TWC.2007.051035]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Annie Uthra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uthra, R.A., Kasmir Raja, S.V., Jeyasekar, A. et al. A probabilistic approach for predictive congestion control in wireless sensor networks. J. Zhejiang Univ. - Sci. C 15, 187–199 (2014). https://doi.org/10.1631/jzus.C1300175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300175

Key words

CLC number